Menu Close

Find-the-area-of-the-region-enclose-by-the-curve-y-1-x-2-and-the-line-y-1-3x-x-1-




Question Number 109674 by I want to learn more last updated on 24/Aug/20
Find the area of the region enclose by the curve   y  =  1  −  x^2  ,  and the line    y  =  1  +  3x,    x  =  1.
Findtheareaoftheregionenclosebythecurvey=1x2,andtheliney=1+3x,x=1.
Answered by bobhans last updated on 25/Aug/20
   ((⋰♭o♭⋰)/(hans))  Area 1 = ∫_0 ^1 (1+3x)−(1−x^2 )dx                   = ∫_0 ^1 (3x+x^2 )dx=[(3/2)x^2 +(1/3)x^3 ]_0 ^1                    = (3/2)+(1/3)=((11)/6)  Area 2 = ((Δ(√Δ))/(6a^2 ))= ((9(√9))/(6.1))=((9.3)/6)=((27)/6)  where 1+3x=1−x^2 ⇒x^2 +3x=0; Δ=9−4.1.0=9  Totally area =((11+27)/6)=((38)/6)
\iddotso\iddotshansArea1=10(1+3x)(1x2)dx=10(3x+x2)dx=[32x2+13x3]01=32+13=116Area2=ΔΔ6a2=996.1=9.36=276where1+3x=1x2x2+3x=0;Δ=94.1.0=9Totallyarea=11+276=386
Commented by I want to learn more last updated on 25/Aug/20
Thanks sir
Thankssir
Answered by 1549442205PVT last updated on 25/Aug/20
We need find intesection point of two  graphs of the functions y=1−x^2 and  y=3x+1.   { ((y=1−x^2 )),((y=3x+1)) :}⇔ { ((1−x^2 =3x+1(1))),((y=3x+1)) :}  (1)⇔x^2 +3x=0⇔x(x+3)=0⇔x∈{0;−3}  y∈{1;−8}⇒A(0;1),B(−3;−8)  S_1 =∫_0 ^( 1) ∣3x+1−(1−x^2 )∣dx=∫_0 ^1 (x^2 +3x)dx  S_2 =∫_(−3) ^( 0) ∣(x^2 +3x)∣dx=−∫_(−3) ^( 0) (x^2 +3x)∣dx  −(x^3 /3)−((3x^2 )/2)=−9+((27)/2)=(9/2)  =((x^3 /3)+((3x^2 )/2))_0 ^1 =(1/3)+(3/2)=((11)/6) .From that  S=S_1 +S_2 =(9/2)+((11)/6)=((19)/3)
Weneedfindintesectionpointoftwographsofthefunctionsy=1x2andy=3x+1.{y=1x2y=3x+1{1x2=3x+1(1)y=3x+1(1)x2+3x=0x(x+3)=0x{0;3}y{1;8}A(0;1),B(3;8)S1=013x+1(1x2)dx=01(x2+3x)dxS2=30(x2+3x)dx=30(x2+3x)dxx333x22=9+272=92=(x33+3x22)01=13+32=116.FromthatS=S1+S2=92+116=193
Commented by I want to learn more last updated on 25/Aug/20
Thanks sir
Thankssir
Commented by 1549442205PVT last updated on 25/Aug/20
You are welcome!
Youarewelcome!

Leave a Reply

Your email address will not be published. Required fields are marked *