Menu Close

Find-the-area-of-the-segment-of-the-curve-y-2-x-3-x-2-if-the-line-x-2-is-the-chord-determining-the-segment-




Question Number 130158 by benjo_mathlover last updated on 23/Jan/21
Find the area of the segment of the curve  y^2  =   x^3 −x^2  if the line x=   2 is the chord   determining the segment
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{the}\:\mathrm{segment}\:\mathrm{of}\:\mathrm{the}\:\mathrm{curve} \\ $$$$\mathrm{y}^{\mathrm{2}} \:=\:\:\:\mathrm{x}^{\mathrm{3}} −\mathrm{x}^{\mathrm{2}} \:\mathrm{if}\:\mathrm{the}\:\mathrm{line}\:\mathrm{x}=\:\:\:\mathrm{2}\:\mathrm{is}\:\mathrm{the}\:\mathrm{chord}\: \\ $$$$\mathrm{determining}\:\mathrm{the}\:\mathrm{segment}\: \\ $$
Answered by liberty last updated on 23/Jan/21
Area = ∫_1 ^( 2) [ x(√(x−1))−(−x(√(x−1)) ) ] dx  = 2∫_1 ^( 2) x (√(x−1)) dx   = 4∫_0 ^( 1) (μ^2 +1)μ^2  dμ ; where μ=(√(x−1))  = 4 [ (μ^5 /5) + (μ^3 /3) ]_0 ^1 = ((32)/(15))
$$\mathrm{Area}\:=\:\int_{\mathrm{1}} ^{\:\mathrm{2}} \left[\:\mathrm{x}\sqrt{\mathrm{x}−\mathrm{1}}−\left(−\mathrm{x}\sqrt{\mathrm{x}−\mathrm{1}}\:\right)\:\right]\:\mathrm{dx} \\ $$$$=\:\mathrm{2}\int_{\mathrm{1}} ^{\:\mathrm{2}} \mathrm{x}\:\sqrt{\mathrm{x}−\mathrm{1}}\:\mathrm{dx}\: \\ $$$$=\:\mathrm{4}\int_{\mathrm{0}} ^{\:\mathrm{1}} \left(\mu^{\mathrm{2}} +\mathrm{1}\right)\mu^{\mathrm{2}} \:\mathrm{d}\mu\:;\:\mathrm{where}\:\mu=\sqrt{\mathrm{x}−\mathrm{1}} \\ $$$$=\:\mathrm{4}\:\left[\:\frac{\mu^{\mathrm{5}} }{\mathrm{5}}\:+\:\frac{\mu^{\mathrm{3}} }{\mathrm{3}}\:\right]_{\mathrm{0}} ^{\mathrm{1}} =\:\frac{\mathrm{32}}{\mathrm{15}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *