Menu Close

find-the-close-form-of-n-0-1-n-n-1-n-2-2n-1-2n-3-




Question Number 115405 by mathdave last updated on 25/Sep/20
find the close form of  Σ_(n=0) ^∞ (((−1)^n )/((n+1)(n+2)(2n+1)(2n+3)))
findthecloseformofn=0(1)n(n+1)(n+2)(2n+1)(2n+3)
Answered by mathmax by abdo last updated on 25/Sep/20
S =lim_(n→+∞)  S_n   with S_n =Σ_(k=0) ^n  (((−1)^k )/((k+1)(k+2)(2k+1)(2k+3)))  let decompose F(x) =(1/((x+1)(x+2)(2x+1)(2x+3)))  F(x)=(a/(x+1)) +(b/(x+2)) +(c/(2x+1)) +(d/(2x+3))  a =(1/((−1))) =−1 , b =(1/((−1)(−1)(1))) =1  c =(1/(((1/2))((3/2))(2))) =(2/3) ,  d =(1/((((−1)/2))((1/2))(−2))) =2 ⇒  F(x) =−(1/(x+1)) +(1/(x+2)) +(2/(3(2x+1))) +(2/(2x+3)) ⇒  S_n =−Σ_(k=0) ^n  (((−1)^k )/(k+1)) +Σ_(k=0) ^n  (((−1)^k )/(k+2)) +(2/3)Σ_(k=0) ^n  (((−1)^k )/(2k+1)) +2Σ_(k=0) ^n  (((−1)^k )/(2k+3))  we have− Σ_(k=0) ^n  (((−1)^k )/(k+1)) =−Σ_(k=1) ^(n+1) (((−1)^(k−1) )/k) =Σ_(k=1) ^(n+1) (((−1)^k )/k)→−ln(2)  Σ_(k=0) ^n  (((−1)^k )/(k+2)) =Σ_(k=2) ^(n+2)  (((−1)^k )/k) =Σ_(k=1) ^(n+2)  (((−1)^k )/k) +1→1−ln(2)  Σ_(k=0) ^n  (((−1)^k )/(2k+1)) →(π/4)  Σ_(k=0) ^n  (((−1)^k )/(2k+3)) =_(k=p−1)   Σ_(p=1) ^(n+1)  (((−1)^(p−1) )/(2p+1)) =−Σ_(p=1) ^(n+1)  (((−1)^p )/(2p+1))  =−Σ_(p=0) ^(n+1)  (((−1)^p )/(2p+1)) +1 =1−(π/4) ⇒  S =lim_(n→+∞)  S_n =−ln(2)+1−ln(2)+(2/3).(π/4) +2(1−(π/4))  =1−2ln(2)+(π/6) +2−(π/2) =3−2ln(2)−(π/3)
S=limn+SnwithSn=k=0n(1)k(k+1)(k+2)(2k+1)(2k+3)letdecomposeF(x)=1(x+1)(x+2)(2x+1)(2x+3)F(x)=ax+1+bx+2+c2x+1+d2x+3a=1(1)=1,b=1(1)(1)(1)=1c=1(12)(32)(2)=23,d=1(12)(12)(2)=2F(x)=1x+1+1x+2+23(2x+1)+22x+3Sn=k=0n(1)kk+1+k=0n(1)kk+2+23k=0n(1)k2k+1+2k=0n(1)k2k+3wehavek=0n(1)kk+1=k=1n+1(1)k1k=k=1n+1(1)kkln(2)k=0n(1)kk+2=k=2n+2(1)kk=k=1n+2(1)kk+11ln(2)k=0n(1)k2k+1π4k=0n(1)k2k+3=k=p1p=1n+1(1)p12p+1=p=1n+1(1)p2p+1=p=0n+1(1)p2p+1+1=1π4S=limn+Sn=ln(2)+1ln(2)+23.π4+2(1π4)=12ln(2)+π6+2π2=32ln(2)π3
Commented by mathdave last updated on 25/Sep/20
beautiful approaches but little mistake
beautifulapproachesbutlittlemistake
Commented by mathmax by abdo last updated on 25/Sep/20
i think there is no mistakes ...!
ithinkthereisnomistakes!
Commented by Tawa11 last updated on 06/Sep/21
Great sir
Greatsir

Leave a Reply

Your email address will not be published. Required fields are marked *