Menu Close

Find-the-coefficient-of-1-x-20-in-1-x-x-2-20-2-x-4-in-1-x-x-2-x-3-11-please-help-me-




Question Number 152817 by rexford last updated on 01/Sep/21
  Find the coefficient of  1.x^(20 ) in (1−x+x^2 )^(20)     2.x^4  in (1+x+x^2 +x^3 )_ ^(11)   please,help me
Findthecoefficientof1.x20in(1x+x2)202.x4in(1+x+x2+x3)11please,helpme
Answered by puissant last updated on 01/Sep/21
2)  (1+x+x^2 +x^3 )^(11) =(1+x^2 )^(11) (1+x)^(11)   =(1+11x^2 +C_(11) ^2 x^4 +...+x^(22) )(1+11x+C_(11) ^2 x^2 +...+x^(11) )  Hence, coefficient of x^4  will be   1×C_(11) ^4 +11×C_(11) ^2 +1×C_(11) ^2   =C_(11) ^4 +12C_(11) ^2   =330+660  =990..
2)(1+x+x2+x3)11=(1+x2)11(1+x)11=(1+11x2+C112x4++x22)(1+11x+C112x2++x11)Hence,coefficientofx4willbe1×C114+11×C112+1×C112=C114+12C112=330+660=990..
Answered by mr W last updated on 02/Sep/21
(1)  (1−x+x^2 )^(20) =Σ_(a+b+c=20)  (((20)),((a,b,c)) )1^a (−x)^b (x^2 )^c   =Σ_(a+b+c=20)  (((20)),((a,b,c)) )(−1)^b x^(b+2c)   b+2c=20 & a+b+c=20  ⇒c=10,b=0,a=10⇒((20!)/(10!0!10!))  ⇒c=9,b=2,a=9⇒((20!)/(9!2!9!))  ⇒c=8,b=4,a=8⇒((20!)/(8!4!8!))  ⇒c=7,b=6,a=7⇒((20!)/(7!6!7!))  ⇒c=6,b=8,a=6⇒((20!)/(6!8!6!))  ...  ⇒c=2,b=16,a=2⇒((20!)/(2!16!2!))  ⇒c=1,b=18,a=1⇒((20!)/(1!18!1!))  ⇒c=0,b=20,a=0⇒((20!)/(0!20!0!))  coef. of x^(20)  is  ((20!)/((10!)^2 0!))+((20!)/((9!)^2 2!))+((20!)/((8!)^2 4!))+...+((20!)/((1!)^2 18!))+((20!)/((0!)^2 20!))  =184 756+9 237 808+62 355 150+  +133 024 320+116 396 280+46 558 512+  +8 817 900+775 200+29 070+380+1  =377 379 369    or  (1−x+x^2 )^(20) =(((1+x^3 )^(20) )/((1+x)^(20) ))=Σ_(r=0) ^(20) C_r ^(20) x^(3r) Σ_(k=0) ^∞ C_(19) ^(k+19) (−1)^k x^k   3r+k=20:  r=0,k=20 ⇒C_0 ^(20) C_(19) ^(39)   r=1,k=17 ⇒−C_1 ^(20) C_(19) ^(36)   r=2,k=14 ⇒C_2 ^(20) C_(19) ^(33)   r=3,k=11 ⇒−C_3 ^(20) C_(19) ^(30)   ...  r=6,k=2 ⇒C_6 ^(20) C_(19) ^(21)   coef. of x^(20)  is  C_0 ^(20) C_(19) ^(39) −C_1 ^(20) C_(19) ^(36) +C_2 ^(20) C_(19) ^(33) −C_3 ^(20) C_(19) ^(30) +...+C_6 ^(20) C_(19) ^(21)   =377 379 369    or  (1−x+x^2 )^(20) =Σ_(r=0) ^(20) C_r ^(20) x^r (x−1)^r   =Σ_(r=0) ^(20) [C_r ^(20) x^r Σ_(k=0) ^r C_k ^r x^(r−k) (−1)^k ]  =Σ_(r=0) ^(20) Σ_(k=0) ^r (−1)^k C_r ^(20) C_k ^r x^(2r−k)   2r−k=20:  k=0,r=10 ⇒C_(10) ^(20) C_0 ^(10) =((20!)/((10!)^2 0!))  k=2,r=11 ⇒C_(11) ^(20) C_2 ^(11) =((20!)/((9!)^2 2!))  k=4,r=12 ⇒C_(12) ^(20) C_4 ^(12) =((20!)/((8!)^2 4!))  ...  k=20,r=20 ⇒C_(20) ^(20) C_(20) ^(20) =((20!)/((0!)^2 20!))
(1)(1x+x2)20=a+b+c=20(20a,b,c)1a(x)b(x2)c=a+b+c=20(20a,b,c)(1)bxb+2cb+2c=20&a+b+c=20c=10,b=0,a=1020!10!0!10!c=9,b=2,a=920!9!2!9!c=8,b=4,a=820!8!4!8!c=7,b=6,a=720!7!6!7!c=6,b=8,a=620!6!8!6!c=2,b=16,a=220!2!16!2!c=1,b=18,a=120!1!18!1!c=0,b=20,a=020!0!20!0!coef.ofx20is20!(10!)20!+20!(9!)22!+20!(8!)24!++20!(1!)218!+20!(0!)220!=184756+9237808+62355150++133024320+116396280+46558512++8817900+775200+29070+380+1=377379369or(1x+x2)20=(1+x3)20(1+x)20=20r=0Cr20x3rk=0C19k+19(1)kxk3r+k=20:r=0,k=20C020C1939r=1,k=17C120C1936r=2,k=14C220C1933r=3,k=11C320C1930r=6,k=2C620C1921coef.ofx20isC020C1939C120C1936+C220C1933C320C1930++C620C1921=377379369or(1x+x2)20=20r=0Cr20xr(x1)r=20r=0[Cr20xrrk=0Ckrxrk(1)k]=20r=0rk=0(1)kCr20Ckrx2rk2rk=20:k=0,r=10C1020C010=20!(10!)20!k=2,r=11C1120C211=20!(9!)22!k=4,r=12C1220C412=20!(8!)24!k=20,r=20C2020C2020=20!(0!)220!
Commented by Rankut last updated on 01/Sep/21
  😱😱😱
😱😱😱
Commented by mr W last updated on 01/Sep/21
Commented by Tawa11 last updated on 01/Sep/21
Weldone sir.
Weldonesir.
Commented by peter frank last updated on 03/Sep/21
GODBLESS you
GODBLESSyou
Answered by mr W last updated on 01/Sep/21
(2)  (1+x+x^2 +x^3 )^(11) =(((1−x^4 )^(11) )/((1−x)^(11) ))  =Σ_(r=0) ^(11) (−1)^r C_r ^(11) x^(4r) Σ_(k=0) ^∞ C_(10) ^(k+10) x^k   4r+k=4:  r=0,k=4 ⇒C_0 ^(11) C_(10) ^(14) =1001  r=1,k=0 ⇒−C_1 ^(11) C_(10) ^(10) =−11  coef. of x^4  is  1001−11=990
(2)(1+x+x2+x3)11=(1x4)11(1x)11=11r=0(1)rCr11x4rk=0C10k+10xk4r+k=4:r=0,k=4C011C1014=1001r=1,k=0C111C1010=11coef.ofx4is100111=990
Answered by mathmax by abdo last updated on 02/Sep/21
(1−x+x^2 )^(20)  =(x^2 −x+1)^(20)  =Σ_(n=0) ^(20)  C_(20) ^n  (x^2 −x)^n   =Σ_(n=0) ^(20)  x^n  C_(20) ^n  (x−1)^n   =Σ_(n=0) ^(20 )  x^n  C_(20) ^n  (Σ_(k=0) ^n  C_n ^k  x^k (−1)^(n−k) )  =Σ_(n=0) ^(20) (Σ_(k=0) ^n  C_n ^k  x^k (−1)^(n−k) )C_(20) ^n  x^n   =Σ_(n=0) ^(20) (Σ_(k=0) ^n  C_n ^k  x^k (−1)^k )(−1)^n  C_(20) ^n  x^n   =Σ_(n=0) ^(20) (C_n ^o  −C_n ^(1 ) x+C_n ^2  x^2 +....C_n ^n  (−1)^n  x^n )(−1)^n  C_(20) ^n  x^n   =Σ_(n=0) ^(20)  C_n ^0 (−1)^n  C_(20) ^(n )  x^n  −Σ_(n=0) ^(20)  C_n ^1 (−1)^n  C_(20) ^(n ) x^(n+1)  +  +Σ_(n=0) ^(20)  C_n ^2  (−1)^n  C_(20) ^n  x^(n+2)  +....+Σ_(n=0) ^(20)  C_n ^n  C_(20) ^n  x^(2n)  ⇒  lecoefficient de x^n  in this expansion is  A_n =C_(20) ^0  C_(20) ^(20)  +C_(19) ^1  C_(20) ^(19) +C_(18) ^2  C_(20) ^(18)  +....+C_(10) ^(10)  C_(20) ^(10)   ⇒A_n =(C_(20) ^o )^2  +(C_(19) ^1 )^2  +(C_(18) ^2 )^2  +.....(C_(10) ^(10) )^2
(1x+x2)20=(x2x+1)20=n=020C20n(x2x)n=n=020xnC20n(x1)n=n=020xnC20n(k=0nCnkxk(1)nk)=n=020(k=0nCnkxk(1)nk)C20nxn=n=020(k=0nCnkxk(1)k)(1)nC20nxn=n=020(CnoCn1x+Cn2x2+.Cnn(1)nxn)(1)nC20nxn=n=020Cn0(1)nC20nxnn=020Cn1(1)nC20nxn+1++n=020Cn2(1)nC20nxn+2+.+n=020CnnC20nx2nlecoefficientdexninthisexpansionisAn=C200C2020+C191C2019+C182C2018+.+C1010C2010An=(C20o)2+(C191)2+(C182)2+..(C1010)2

Leave a Reply

Your email address will not be published. Required fields are marked *