Menu Close

Find-the-coefficient-of-x-11-in-2x-2-x-3-6-




Question Number 183205 by cortano1 last updated on 23/Dec/22
  Find the coefficient of x^(11)  in    (2x^2 +x−3)^6  .
Findthecoefficientofx11in(2x2+x3)6.
Answered by mr W last updated on 23/Dec/22
(2x^2 +x−3)^6 =Σ_(a+b+c=6)  ((6),((a,b,c)) )(2x^2 )^a x^b (−3)^c   a+b+c=6  2a+b=11  ⇒b=11−2a ≥0 ⇒a≤5  ⇒a=c+5  ⇒c=0, a=5, b=1  coef. of x^(11) :  2^5 ×1^1 ×(−3)^0 ×((6!)/(5!×1!×0!))=32×6=192
(2x2+x3)6=a+b+c=6(6a,b,c)(2x2)axb(3)ca+b+c=62a+b=11b=112a0a5a=c+5c=0,a=5,b=1coef.ofx11:25×11×(3)0×6!5!×1!×0!=32×6=192
Answered by cortano1 last updated on 24/Dec/22
 ⇒(2x^2 +x−3)^6 = 64x^(12) (1+(1/2)x^(−1) −(3/2)x^(−2) )^6    = 64x^(12)  .Σ_(0≤a,b,c≤6) ^(a+b+c=6)   (((    6)),((a,b,c)) ) (1^a )((1/2)x^(−1) )^b (−(3/2)x^(−2) )^c    [ −b−2c = −1, b+2c=1 ∧ a+b+c = 6]   ∵ c = 0 , b=1 , a=5   Coefficient of x^(11)  is 64×((6!)/(5!.1!.0!)) ×(1/2)  = 64×3 = 192
(2x2+x3)6=64x12(1+12x132x2)6=64x12.a+b+c=60a,b,c6(6a,b,c)(1a)(12x1)b(32x2)c[b2c=1,b+2c=1a+b+c=6]c=0,b=1,a=5Coefficientofx11is64×6!5!.1!.0!×12=64×3=192

Leave a Reply

Your email address will not be published. Required fields are marked *