Menu Close

Find-the-coefficient-of-x-6-in-2x-1-6-x-2-x-1-4-4-




Question Number 58373 by Tawa1 last updated on 22/Apr/19
Find the coefficient of  x^6   in   (2x + 1)^6  (x^2  + x + (1/4))^4
Findthecoefficientofx6in(2x+1)6(x2+x+14)4
Commented by maxmathsup by imad last updated on 24/Apr/19
we have (2x+1)^6 (x^2  +x+(1/4))^4  =2^6 (x+(1/2))^6 (x+(1/2))^8   =2^6 (x+(1/2))^(14)   =2^6  Σ_(k=0) ^(14)  C_(14) ^k  x^k  ((1/2))^(14−k)  =(2^6 /2^(14) ) Σ_(k=0) ^(14)  C_(14) ^k  2^k   x^k    so the coefficient  of x^6  is  a_6 =2^(−8)  C_(14) ^6   2^6  =(1/4) C_(14) ^6   =(1/4)  ((14!)/(6!8!))  .
wehave(2x+1)6(x2+x+14)4=26(x+12)6(x+12)8=26(x+12)14=26k=014C14kxk(12)14k=26214k=014C14k2kxksothecoefficientofx6isa6=28C14626=14C146=1414!6!8!.
Answered by tanmay last updated on 22/Apr/19
(2x+1)^6 [(x+(1/2))^2 ]^4   (2x+1)^6 (x+(1/2))^8      or method  (2x+1)^6 [(x+(1/2))^2 ]^4   =2^6 (x+(1/2))^6 (x+(1/2))^8   =2^6 (x+(1/2))^(14)   =2^6 ×14c_8 ×x^6 ×((1/2))^8   =((14×13×12×11×10×9)/(6×5×4×3×2×2^2 ))  =((14×13×11×9)/(6×4))  =((7×13×11×3)/4)=((3003)/4)
(2x+1)6[(x+12)2]4(2x+1)6(x+12)8ormethod(2x+1)6[(x+12)2]4=26(x+12)6(x+12)8=26(x+12)14=26×14c8×x6×(12)8=14×13×12×11×10×96×5×4×3×2×22=14×13×11×96×4=7×13×11×34=30034
Commented by Tawa1 last updated on 23/Apr/19
God bless you sir
Godblessyousir

Leave a Reply

Your email address will not be published. Required fields are marked *