Menu Close

find-the-coefficientof-x-2-in-the-binomial-expansion-of-x-2-2-x-4-




Question Number 54876 by shaddie last updated on 13/Feb/19
find the coefficientof x^2  in the binomial  expansion of (x^2 +(2/x))^4
findthecoefficientofx2inthebinomialexpansionof(x2+2x)4
Commented by maxmathsup by imad last updated on 13/Feb/19
we have (x^2  +(2/x))^4  =Σ_(k=0) ^4  C_4 ^k    (x^2 )^k ((2/x))^(4−k)   =Σ_(k=0) ^4  C_4 ^k   x^(2k)   2^(4−k)  x^(k−4)  =Σ_(k=0) ^4  C_4 ^k   2^(4−k)  x^(3k−4)     the coefficient of x^2  is  λ_k  /  3k−4 =2 ⇒3k =6 ⇒k =2 ⇒λ_k =λ_2 = C_4 ^2  2^(4−2)   =4 C_4 ^2   C_4 ^2  =((4!)/(2!2!)) =((4×3 )/2) =6 ⇒λ_2 =4×6 =24 .
wehave(x2+2x)4=k=04C4k(x2)k(2x)4k=k=04C4kx2k24kxk4=k=04C4k24kx3k4thecoefficientofx2isλk/3k4=23k=6k=2λk=λ2=C42242=4C42C42=4!2!2!=4×32=6λ2=4×6=24.
Answered by tanmay.chaudhury50@gmail.com last updated on 14/Feb/19
let r+1 th term contains x^2   4c_r (x^2 )^(4−r) ((2/x))^r   4c_r ×x^(8−2r) ×(2^r /x^r )  hence x^(8−2r−r) =x^2   −3r=2−8   →−3r=−6  r=2  4c_2 ×x^(8−3×2) ×2^2 →   ((4!)/(2!2!))×4×x^2   so the coefficient is →6×4=24
letr+1thtermcontainsx24cr(x2)4r(2x)r4cr×x82r×2rxrhencex82rr=x23r=283r=6r=24c2×x83×2×224!2!2!×4×x2sothecoefficientis6×4=24

Leave a Reply

Your email address will not be published. Required fields are marked *