Question Number 85902 by mr W last updated on 26/Mar/20
$${find}\:{the}\:{coefficients}\:{of}\:{x}^{\mathrm{2}} \:{and}\:{x}^{\mathrm{3}} \: \\ $$$${terms}\:{in}\:{the}\:{expansion}\:{of} \\ $$$$\left(\mathrm{1}+{x}\right)\left(\mathrm{1}+\mathrm{2}{x}\right)^{\mathrm{2}} \left(\mathrm{1}+\mathrm{3}{x}\right)^{\mathrm{3}} …\left(\mathrm{1}+\mathrm{100}{x}\right)^{\mathrm{100}} \\ $$
Commented by Serlea last updated on 26/Mar/20
$$\mathrm{Ok} \\ $$$$\mathrm{From}\:\mathrm{my}\:\:\mathrm{analysis},\:\mathrm{it}'\mathrm{s}\:\mathrm{21868}\:\mathrm{and}\:\mathrm{1400} \\ $$$$\boldsymbol{\mathrm{How}}? \\ $$$$\mathrm{Starting}\:\left(\mathrm{1}+\mathrm{x}\right)=\:\mathrm{Doesn}^{'} \mathrm{t}\:\mathrm{exist} \\ $$$$\left(\mathrm{1}+\mathrm{x}\right)\left(\mathrm{1}+\mathrm{2x}\right)^{\mathrm{2}} =\mathrm{4}\:\mathrm{and}\:\mathrm{8} \\ $$$$\left(\mathrm{1}+\mathrm{x}\right)\left(\mathrm{1}+\mathrm{2x}\right)^{\mathrm{2}} \left(\mathrm{1}+\mathrm{3x}\right)^{\mathrm{3}} =\mathrm{238}\:\mathrm{and}\:\mathrm{80} \\ $$$$\left\{\:\mathrm{238x}^{\mathrm{3}} +\mathrm{80x}^{\mathrm{2}} +\mathrm{14x}+\mathrm{1}\right\} \\ $$$$\left(\mathrm{1}+\mathrm{x}\right)\left(\mathrm{1}+\mathrm{2x}\right)^{\mathrm{2}} \left(\mathrm{1}+\mathrm{3x}\right)^{\mathrm{3}} \left(\mathrm{1}+\mathrm{4x}\right)^{\mathrm{4}} =\mathrm{3118}\:\mathrm{and}\:\mathrm{400} \\ $$$$\left\{\mathrm{3118x}^{\mathrm{3}} +\mathrm{400x}^{\mathrm{2}} +\mathrm{30x}+\mathrm{1}\right\} \\ $$$$\:\mathrm{It}'\mathrm{s}\:\mathrm{impossible}\:\mathrm{to}\:\mathrm{calculate}\:\mathrm{to}\:\mathrm{the}\:\mathrm{end}\:\boldsymbol{\mathrm{B}}\mathrm{uy} \\ $$$$\mathrm{let}\:\mathrm{try}\:\mathrm{the}\:\mathrm{next}\:\mathrm{two} \\ $$$$\left(\mathrm{1}+\mathrm{x}\right)\left(\mathrm{1}+\mathrm{2x}\right)^{\mathrm{2}} \left(\mathrm{1}+\mathrm{3x}\right)^{\mathrm{3}} \left(\mathrm{1}+\mathrm{4x}\right)^{\mathrm{4}} \left(\mathrm{1}+\mathrm{5x}\right)^{\mathrm{5}} =\mathrm{21868}\:\mathrm{and}\:\mathrm{1400} \\ $$$$\left\{\mathrm{21868x}^{\mathrm{3}} +\mathrm{1400x}^{\mathrm{2}} +\mathrm{55x}+\mathrm{1}\right\} \\ $$$$\left(\mathrm{1}+\mathrm{x}\right)\left(\mathrm{1}+\mathrm{2x}\right)^{\mathrm{2}} \left(\mathrm{1}+\mathrm{3x}\right)^{\mathrm{3}} \left(\mathrm{1}+\mathrm{4x}\right)^{\mathrm{4}} \left(\mathrm{1}+\mathrm{5x}\right)^{\mathrm{5}} \left(\mathrm{1}+\mathrm{6x}\right)^{\mathrm{6}} \\ $$$$\Rightarrow\:\mathrm{21868}\left(\mathrm{1}+\mathrm{6}\boldsymbol{\mathrm{x}}\right)^{\mathrm{6}} \boldsymbol{\mathrm{x}}^{\mathrm{3}} +\mathrm{1400}\left(\mathrm{1}+\mathrm{6}\boldsymbol{\mathrm{x}}\right)^{\mathrm{6}} \mathrm{x}^{\mathrm{2}} +\mathrm{55}\left(\mathrm{1}+\mathrm{6}\boldsymbol{\mathrm{x}}\right)^{\mathrm{6}} +\left(\mathrm{1}+\mathrm{6}\boldsymbol{\mathrm{x}}\right)^{\mathrm{6}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\underset{\mathrm{21868x}^{\mathrm{3}} } {\downdownarrows}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\underset{\mathrm{1400x}^{\mathrm{2}} } {\downdownarrows} \\ $$$$ \\ $$$$\mathrm{With}\:\mathrm{this},\:\mathrm{The}\:\mathrm{coeff}.\:\mathrm{remains}\:\mathrm{constant}\:\mathrm{for} \\ $$$$\mathrm{21868}\:\mathrm{and}\:\mathrm{1400} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Commented by mr W last updated on 26/Mar/20
$${i}\:{don}'{t}\:{think}\:{you}\:{are}\:{right}\:{sir}. \\ $$$${even}\:{when}\:{we}\:{only}\:{have}\:\left(\mathrm{1}+\mathrm{100}{x}\right)^{\mathrm{100}} \\ $$$${x}^{\mathrm{2}} \:{term}\:{is}\:{C}_{\mathrm{2}} ^{\mathrm{100}} \left(\mathrm{100}{x}\right)^{\mathrm{2}} =\frac{\mathrm{99}×\mathrm{100}^{\mathrm{3}} }{\mathrm{2}}{x}^{\mathrm{2}} \\ $$$${x}^{\mathrm{3}} \:\:{term}\:{is}\:{C}_{\mathrm{3}} ^{\mathrm{100}} \left(\mathrm{100}{x}\right)^{\mathrm{3}} =\frac{\mathrm{98}×\mathrm{99}×\mathrm{100}^{\mathrm{4}} }{\mathrm{6}}{x}^{\mathrm{3}} \\ $$
Commented by Serlea last updated on 26/Mar/20
$$\mathrm{Ok}\:\mathrm{sir}\:\mathrm{Thanks}\:\mathrm{for}\:\mathrm{comment}\:\mathrm{but}\:\mathrm{Watch} \\ $$$$\mathrm{The}\:\mathrm{c}_{\mathrm{2},\mathrm{3}} ^{\mathrm{100}} \:\mathrm{is}\:\mathrm{going}\:\mathrm{to}\:\mathrm{be}\:\mathrm{multiply}\:\mathrm{by}\:\mathrm{another}\:\mathrm{X}^{\mathrm{n}} \left(\mathrm{n}=\mathrm{certain}\:\mathrm{number}\neq\mathrm{0},\mathrm{1}\right)\:\mathrm{to}\:\mathrm{increase}\:\mathrm{the}\:\mathrm{power} \\ $$$$\frac{\mathrm{98}×\mathrm{99}×\mathrm{100}^{\mathrm{4}} }{\mathrm{6}}\mathrm{X}^{\mathrm{3}+\mathrm{n}} \\ $$$$\mathrm{Hope}\:\mathrm{that}\:\mathrm{You}\:\mathrm{review}\:\mathrm{the}\:\mathrm{solution}\:\mathrm{again} \\ $$
Commented by mr W last updated on 26/Mar/20
$${certainly}\:{i}\:{know}\:{that}. \\ $$$${i}\:{just}\:{wanted}\:{to}\:{show}\:{that}\:{your}\:{answer} \\ $$$${is}\:{wrong}.\:{i}\:{didn}'{t}\:{say}\:{that}\:{is}\:{the}\:{final} \\ $$$${answer}\:{what}\:{i}\:{gave}.\:{i}\:{just} \\ $$$${showed}\:{the}\:{x}^{\mathrm{2}} \:{and}\:{x}^{\mathrm{3}} \:{in} \\ $$$$\left(\mathrm{1}+\mathrm{100}{x}\right)^{\mathrm{100}} ,\:{the}\:{coef}.\:{are}\:{already} \\ $$$${very}\:{huge}.\:{i}\:{said}\:“{even}\:{when}\:{we}\:{only}…'' \\ $$$${the}\:{answer}\:{to}\:{the}\:{question}\:{is}\:{much} \\ $$$${more}\:{complicated}.\:{i}'{ll}\:{try}\:{later}. \\ $$
Commented by Serlea last updated on 26/Mar/20
$$ \\ $$$$\mathrm{To}\:\mathrm{Look}\:\mathrm{from}\:\mathrm{the}\:\mathrm{Open}\:\mathrm{door}, \\ $$$$\mathrm{The}\:\mathrm{coeff}.\:\mathrm{Of}\:\mathrm{X}^{\mathrm{2}} \:\mathrm{and}\:\mathrm{X}^{\mathrm{3}} \:\mathrm{Will}\:\mathrm{remain} \\ $$$$\mathrm{constant}\:\mathrm{because}\:\mathrm{for}\:\mathrm{every}\:\mathrm{Bracket}, \\ $$$$\mathrm{There}\:\mathrm{will}\:\mathrm{be}\:\mathrm{a}\:\mathrm{number}\:''\mathrm{1}''\:\mathrm{that}\:\mathrm{doesn}'\mathrm{t}\:\mathrm{have}\:\mathrm{a}\:\mathrm{coeff}. \\ $$$$\mathrm{let}\:\mathrm{a}=\mathrm{coeff}\:\mathrm{of}\:\mathrm{x}^{\mathrm{3}} \:\:\mathrm{for}\:\mathrm{ax}^{\mathrm{3}} \left(\mathrm{1}+\mathrm{100x}\right)^{\mathrm{100}} \Rightarrow\mathrm{1}+….. \\ $$$$\:\mathrm{So}:\:\:\mathrm{ax}^{\mathrm{3}} \left(\mathrm{1}+\mathrm{12x}+..\right) \\ $$$$=\mathrm{ax}^{\mathrm{3}} +….. \\ $$$$\mathrm{That}\:\mathrm{is}\:\mathrm{to}\:\mathrm{show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{coeff}\:\mathrm{of}\:\mathrm{X}^{\mathrm{3}} \: \\ $$$$\mathrm{will}\:\mathrm{remain}\:\mathrm{constant}\: \\ $$$$ \\ $$
Commented by mr W last updated on 26/Mar/20
$${but}\:{every}\:{x}\:{term}\:{and}\:{every}\:{x}^{\mathrm{2}} \:{can}\:{also} \\ $$$${form}\:{a}\:{new}\:{x}^{\mathrm{3}} \:{term}. \\ $$
Commented by Kunal12588 last updated on 26/Mar/20
$${and}\:{the}\:{answers}\:{are} \\ $$$${x}^{\mathrm{2}} \rightarrow\:\mathrm{57227610000} \\ $$$${x}^{\mathrm{3}} \rightarrow\mathrm{6451445040986110} \\ $$$${I}\:{don}'{t}\:{know}\:{how}\:{to}\:{solve},\:{but}\:{these}\:{are}\:{the} \\ $$$${answer}. \\ $$
Commented by jagoll last updated on 26/Mar/20
$$\mathrm{sir}\:\mathrm{57227610000}\:=\:\mathrm{C}_{\mathrm{2}} ^{\mathrm{100}} ?? \\ $$
Commented by naka3546 last updated on 26/Mar/20
$${C}\underset{\mathrm{2}} {\overset{\mathrm{100}} {\:}}\:\:=\:\:\mathrm{4950}\: \\ $$
Commented by jagoll last updated on 26/Mar/20
$$\mathrm{correction}\: \\ $$$$\mathrm{C}_{\mathrm{2}} ^{\mathrm{100}} ×\left(\mathrm{100}\right)^{\mathrm{2}} \\ $$
Commented by naka3546 last updated on 26/Mar/20
Commented by Serlea last updated on 26/Mar/20
$$\mathrm{How}\:\mathrm{is}\:\mathrm{that}\:\mathrm{possible}\:\mathrm{when}\:\mathrm{it}\:\mathrm{is}\:\mathrm{not} \\ $$$$\left(\mathrm{1}+\mathrm{x}\right)^{\mathrm{100}} \\ $$
Commented by TawaTawa1 last updated on 26/Mar/20
$$\mathrm{Sir}\:\mathrm{mrW}.\:\mathrm{being}\:\mathrm{a}\:\mathrm{while}\:\mathrm{sir}. \\ $$$$\mathrm{Please}\:\mathrm{kindly}\:\mathrm{help}\:\mathrm{with}\:\mathrm{question}\:\:\mathrm{85950}. \\ $$$$\mathrm{Please}.\:\mathrm{Thanks}\:\mathrm{for}\:\mathrm{every}\:\mathrm{time}\:\mathrm{sir}.\:\mathrm{I}\:\mathrm{need}\:\mathrm{it}. \\ $$$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$
Commented by Prithwish Sen 1 last updated on 26/Mar/20
$$\mathrm{Let} \\ $$$$\left(\mathrm{1}+\mathrm{x}\right)\left(\mathrm{1}+\mathrm{2x}\right)^{\mathrm{2}} \left(\mathrm{1}+\mathrm{3x}\right)^{\mathrm{3}} \left(\mathrm{1}+\mathrm{4x}\right)^{\mathrm{4}} \\ $$$$\mathrm{and}\:\mathrm{for}\:\left(\mathrm{1}+\mathrm{x}\right),\:\mathrm{A}^{\mathrm{x}} \mathrm{and}\:\mathrm{A}^{\mathrm{x}^{\mathrm{2}} } \mathrm{denotes}\:\mathrm{the}\:\mathrm{coeffi}.\:\mathrm{of}\: \\ $$$$\mathrm{x}\:\mathrm{and}\:\mathrm{x}^{\mathrm{2}} \:\mathrm{repectively} \\ $$$$\mathrm{similarly}\:\mathrm{B}\:,\:\mathrm{C},\:\mathrm{D}\:\mathrm{for}\:\mathrm{other}\:\mathrm{3}\:\mathrm{factors} \\ $$$$\mathrm{then}\:\mathrm{for}\:\mathrm{the}\:\mathrm{coefficient}\:\mathrm{of}\:\boldsymbol{\mathrm{x}}^{\mathrm{2}} \:\mathrm{for}\:\mathrm{the}\:\mathrm{expression} \\ $$$$\mathrm{will}\:\mathrm{be} \\ $$$$\boldsymbol{\mathrm{A}}^{\boldsymbol{\mathrm{x}}} .\boldsymbol{\mathrm{B}}^{\boldsymbol{\mathrm{x}}} +\boldsymbol{\mathrm{A}}^{\boldsymbol{\mathrm{x}}} .\boldsymbol{\mathrm{C}}^{\boldsymbol{\mathrm{x}}} +\boldsymbol{\mathrm{A}}^{\boldsymbol{\mathrm{x}}} .\boldsymbol{\mathrm{D}}^{\boldsymbol{\mathrm{x}}} +\boldsymbol{\mathrm{B}}^{\boldsymbol{\mathrm{x}}} .\boldsymbol{\mathrm{C}}^{\boldsymbol{\mathrm{x}}} +\boldsymbol{\mathrm{B}}^{\boldsymbol{\mathrm{x}}} .\boldsymbol{\mathrm{D}}^{\boldsymbol{\mathrm{x}}} +\boldsymbol{\mathrm{C}}^{\boldsymbol{\mathrm{x}}} .\boldsymbol{\mathrm{D}}^{\boldsymbol{\mathrm{x}}} + \\ $$$$\boldsymbol{\mathrm{A}}^{\boldsymbol{\mathrm{x}}^{\mathrm{2}} } +\boldsymbol{\mathrm{B}}^{\boldsymbol{\mathrm{x}}^{\mathrm{2}} } +\boldsymbol{\mathrm{C}}^{\boldsymbol{\mathrm{x}}^{\mathrm{2}} } \\ $$$$\mathrm{similarly}\:\mathrm{for}\:\mathrm{the}\:\mathrm{coefficient}\:\mathrm{of}\:\boldsymbol{\mathrm{x}}^{\mathrm{3}} \\ $$$$\boldsymbol{\mathrm{A}}^{\boldsymbol{\mathrm{x}}} .\boldsymbol{\mathrm{B}}^{\boldsymbol{\mathrm{x}}^{\mathrm{2}} } +\boldsymbol{\mathrm{A}}^{\boldsymbol{\mathrm{x}}} .\boldsymbol{\mathrm{C}}^{\boldsymbol{\mathrm{x}}^{\mathrm{2}} } +\boldsymbol{\mathrm{A}}^{\boldsymbol{\mathrm{x}}} .\boldsymbol{\mathrm{D}}^{\boldsymbol{\mathrm{x}}^{\mathrm{2}} } +\boldsymbol{\mathrm{B}}^{\boldsymbol{\mathrm{x}}} .\boldsymbol{\mathrm{C}}^{\boldsymbol{\mathrm{x}}^{\mathrm{2}} } +\boldsymbol{\mathrm{B}}^{\boldsymbol{\mathrm{x}}} .\boldsymbol{\mathrm{D}}^{\boldsymbol{\mathrm{x}}^{\mathrm{2}} } +\boldsymbol{\mathrm{C}}^{\boldsymbol{\mathrm{x}}} .\boldsymbol{\mathrm{D}}^{\boldsymbol{\mathrm{x}}^{\mathrm{2}} } \\ $$$$+\boldsymbol{\mathrm{B}}^{\boldsymbol{\mathrm{x}}^{\mathrm{2}} } .\boldsymbol{\mathrm{C}}^{\boldsymbol{\mathrm{x}}} +\boldsymbol{\mathrm{B}}^{\boldsymbol{\mathrm{x}}^{\mathrm{2}} } .\boldsymbol{\mathrm{D}}^{\boldsymbol{\mathrm{x}}} +\boldsymbol{\mathrm{C}}^{\boldsymbol{\mathrm{x}}^{\mathrm{2}} } .\boldsymbol{\mathrm{D}}^{\boldsymbol{\mathrm{x}}} +\boldsymbol{\mathrm{C}}^{\boldsymbol{\mathrm{x}}^{\mathrm{3}} } +\boldsymbol{\mathrm{D}}^{\boldsymbol{\mathrm{x}}^{\mathrm{3}} } +\boldsymbol{\mathrm{A}}^{\boldsymbol{\mathrm{x}}} .\boldsymbol{\mathrm{B}}^{\boldsymbol{\mathrm{x}}} .\boldsymbol{\mathrm{C}}^{\boldsymbol{\mathrm{x}}} +\boldsymbol{\mathrm{A}}^{\boldsymbol{\mathrm{x}}} .\boldsymbol{\mathrm{B}}^{\boldsymbol{\mathrm{x}}} .\boldsymbol{\mathrm{D}}^{\boldsymbol{\mathrm{x}}} \\ $$$$+\boldsymbol{\mathrm{A}}^{\boldsymbol{\mathrm{x}}} .\boldsymbol{\mathrm{C}}^{\boldsymbol{\mathrm{x}}} .\boldsymbol{\mathrm{D}}^{\boldsymbol{\mathrm{x}}} +\boldsymbol{\mathrm{B}}^{\boldsymbol{\mathrm{x}}} .\boldsymbol{\mathrm{C}}^{\boldsymbol{\mathrm{x}}} .\boldsymbol{\mathrm{D}}^{\boldsymbol{\mathrm{x}}} \\ $$$$\boldsymbol{\mathrm{waiting}}\:\boldsymbol{\mathrm{for}}\:\boldsymbol{\mathrm{your}}\:\boldsymbol{\mathrm{response}}\:\boldsymbol{\mathrm{sir}}. \\ $$
Commented by Serlea last updated on 26/Mar/20
$$\mathrm{Can}\:\mathrm{u}\:\mathrm{explain}\:\mathrm{again} \\ $$$$\mathrm{I}\:\mathrm{am}\:\mathrm{not}\:\mathrm{getting}\:\mathrm{ur}\:\mathrm{point} \\ $$
Answered by mr W last updated on 06/Apr/20