Question Number 21148 by Tinkutara last updated on 14/Sep/17
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{compression}\:\mathrm{in}\:\mathrm{the}\:\mathrm{spring}\:\mathrm{if} \\ $$$$\mathrm{the}\:\mathrm{system}\:\mathrm{shown}\:\mathrm{below}\:\mathrm{is}\:\mathrm{in} \\ $$$$\mathrm{equilibrium}. \\ $$
Commented by Tinkutara last updated on 14/Sep/17
Commented by mrW1 last updated on 14/Sep/17
$$\mathrm{force}\:\mathrm{in}\:\mathrm{spring}=\mathrm{0} \\ $$
Commented by mrW1 last updated on 15/Sep/17
$$\mathrm{since}\:\mathrm{the}\:\mathrm{system}\:\mathrm{is}\:\mathrm{in}\:\mathrm{equilibrium}, \\ $$$$\mathrm{the}\:\mathrm{force}\:\mathrm{in}\:\mathrm{spring}\:\mathrm{must}\:\mathrm{be}\:\mathrm{equal}\:\mathrm{to} \\ $$$$\mathrm{the}\:\mathrm{friction}\:\mathrm{force}\:\mathrm{between}\:\mathrm{block}\:\mathrm{M}\: \\ $$$$\mathrm{and}\:\mathrm{ground}.\:\mathrm{since}\:\mathrm{the}\:\mathrm{surface}\:\mathrm{of} \\ $$$$\mathrm{ground}\:\mathrm{is}\:\mathrm{smooth},\:\mathrm{the}\:\mathrm{friction}\:\mathrm{force} \\ $$$$\mathrm{is}\:\mathrm{zero}.\: \\ $$
Commented by ajfour last updated on 15/Sep/17
$${N}={mg}\mathrm{cos}\:\theta \\ $$$${N}\mathrm{sin}\:\theta={kx} \\ $$$$\Rightarrow\:\:{x}=\frac{{mg}\mathrm{cos}\:\theta\mathrm{sin}\:\theta}{{k}}\:. \\ $$
Commented by Tinkutara last updated on 15/Sep/17
$$\mathrm{My}\:\mathrm{doubt}\:\mathrm{is}\:\mathrm{why}\:\mathrm{it}\:\mathrm{would}\:\mathrm{not}\:\mathrm{be}\:\mathrm{this} \\ $$$$\mathrm{as}\:\mathrm{calculated}\:\mathrm{by}\:\mathrm{ajfour}\:\mathrm{Sir}? \\ $$
Commented by ajfour last updated on 15/Sep/17
$${this}\:{is}\:{the}\:{compression},\:{in}\:{case} \\ $$$${the}\:{wedge}\:{is}\:{in}\:{equilibrium}, \\ $$$${i}\:{think}. \\ $$
Commented by alex041103 last updated on 15/Sep/17
$${Because}\:{of}\:{the}\:{gravitation}\:{the}\:{small} \\ $$$${body}\:{acts}\:{on}\:{the}\:{bigger}\:{with}\:{some} \\ $$$${force}\:{mg}\:{cos}\theta\:{so}\:\:{F}_{{spring}} ={mgcos}\theta{sin}\theta=\frac{\mathrm{1}}{\mathrm{2}}{mgsin}\left(\mathrm{2}\theta\right) \\ $$$${But}\:\overset{\rightarrow} {{F}}_{{spring}} =−{k}\overset{\rightarrow} {{x}}\Rightarrow{F}_{{spring}} ={kx} \\ $$$$\Rightarrow{x}=\frac{{mgsin}\left(\mathrm{2}\theta\right)}{\mathrm{2}{k}} \\ $$
Commented by Tinkutara last updated on 16/Sep/17
$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}! \\ $$
Commented by alex041103 last updated on 15/Sep/17
$${Note}:\:{The}\:{sin}\theta\:\:{in}\:{F}_{{spring}} ={mgcos}\theta{sin}\theta\:{is}\:{there} \\ $$$${because}\:{part}\:{of}\:{the}\:{force}\:{is}\:{applied}\:{on}\:{the} \\ $$$${surface}\:\Rightarrow\:{there}\:{is}\:{some}\:{force}\left({normal}\:{reaction}\right) \\ $$$${which}\:{compensates}\:{for}\:{mgcos}\theta{cos}\theta \\ $$$${where}\:{mgcos}\left(\theta\right){sin}\left(\theta\right)\:{and}\:{mgcos}^{\mathrm{2}} \left(\theta\right) \\ $$$${are}\:{the}\:{magnitudes}\:{of}\:{the}\:{vectors} \\ $$$${one}\:{normal}\:{and}\:{another}\:{parallel}\:{to}\:{the} \\ $$$${surface},\:{and}\:{the}\:{sum}\:{of}\:{those}\:{vectors} \\ $$$${is}\:{the}\:{vector}\:{of}\:{the}\:{force}\:{with}\:{which} \\ $$$${the}\:{smaller}\:{body}\:{acts}\:{on}\:{the}\:{bigger}\:{one}. \\ $$
Commented by mrW1 last updated on 16/Sep/17
$$\mathrm{so}\:\mathrm{that}\:\mathrm{the}\:\mathrm{system}\:\mathrm{remains}\:\mathrm{in} \\ $$$$\mathrm{equilibrium},\:\mathrm{m}\:\mathrm{should}\:\mathrm{not}\:\mathrm{slide}\:\mathrm{alone} \\ $$$$\mathrm{M},\:\mathrm{i}.\mathrm{e}.\:\mathrm{friction}\:\mathrm{must}\:\mathrm{exist}\:\mathrm{between}\:\mathrm{both} \\ $$$$\mathrm{blocks}.\:\mathrm{they}\:\mathrm{act}\:\mathrm{as}\:\mathrm{if}\:\mathrm{they}\:\mathrm{were}\:\mathrm{a}\:\mathrm{single} \\ $$$$\mathrm{block}\:\mathrm{which}\:\mathrm{is}\:\mathrm{connected}\:\mathrm{on}\:\mathrm{the} \\ $$$$\mathrm{spring}.\:\mathrm{since}\:\mathrm{no}\:\mathrm{other}\:\mathrm{horizontal}\:\mathrm{force} \\ $$$$\mathrm{is}\:\mathrm{acting}\:\mathrm{on}\:\mathrm{this}\:\mathrm{block},\:\mathrm{the}\:\mathrm{force}\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{spring}\:\mathrm{also}\:\mathrm{must}\:\mathrm{be}\:\mathrm{zero}. \\ $$$$\mathrm{if}\:\mathrm{there}\:\mathrm{is}\:\mathrm{no}\:\mathrm{friction}\:\mathrm{between}\:\mathrm{m}\:\mathrm{and} \\ $$$$\mathrm{M},\:\mathrm{block}\:\mathrm{m}\:\mathrm{will}\:\mathrm{move}\:\mathrm{with}\:\mathrm{an} \\ $$$$\mathrm{acceleration}\:\mathrm{alone}\:\mathrm{block}\:\mathrm{M}.\:\mathrm{but}\:\mathrm{the} \\ $$$$\mathrm{question}\:\mathrm{says}\:\mathrm{that}\:\mathrm{the}\:\mathrm{system}\:\mathrm{is}\:\mathrm{in} \\ $$$$\mathrm{equilibrium},\:\mathrm{it}\:\mathrm{means}\:\mathrm{no}\:\mathrm{part}\:\mathrm{of}\:\mathrm{it} \\ $$$$\mathrm{is}\:\mathrm{in}\:\mathrm{motion}. \\ $$
Commented by alex041103 last updated on 16/Sep/17
$${yes}\:{ok} \\ $$
Commented by ajfour last updated on 16/Sep/17
$${yes}\:{sir},\:{perfect}\:{logic}. \\ $$