Menu Close

Find-the-constants-a-and-b-from-the-condition-i-lim-x-x-2-1-x-1-ax-b-0-ii-lim-x-x-2-x-1-ax-b-0-




Question Number 122725 by liberty last updated on 19/Nov/20
 Find the constants a and b from the  condition :   (i) lim_(x→∞)  (((x^2 +1)/(x+1))−ax−b)=0  (ii) lim_(x→∞) ((√(x^2 −x+1))−ax−b)=0
Findtheconstantsaandbfromthecondition:(i)limx(x2+1x+1axb)=0(ii)limx(x2x+1axb)=0
Commented by Dwaipayan Shikari last updated on 19/Nov/20
lim_(x→∞) (√(x^2 −x+1))−ax−b  lim_(x→∞) x((√(1−(1/x)+(1/x^2 )))−a−(b/x))  =x(1−(1/(2x))+(1/(2x^2 ))−a−(b/x))=0  If 1−a=0⇒a=1  and then it becomes −(1/2)+(1/(2x))−b=0⇒     x→∞   b=−(1/2)    so  { ((a=1)),((b=−(1/2))) :}
limxx2x+1axblimxx(11x+1x2abx)=x(112x+12x2abx)=0If1a=0a=1andthenitbecomes12+12xb=0xb=12so{a=1b=12
Commented by bemath last updated on 19/Nov/20
(i) lim_(x→∞) (((x^2 +1)/(x+1))−(((ax+b)(x+1))/(x+1))) =   lim_(x→∞)  (((x^2 +1−(ax^2 +(a+b)x+b))/(x+1))) =   lim_(x→∞)  ((((1−a)x^2 −(a+b)x+1−b)/(x+1)))   because the limit equal to 0 , it meant    { ((1−a = 0⇒a=1)),((−(a+b)=0⇒b=−1)) :}
(i)limx(x2+1x+1(ax+b)(x+1)x+1)=limx(x2+1(ax2+(a+b)x+b)x+1)=limx((1a)x2(a+b)x+1bx+1)becausethelimitequalto0,itmeant{1a=0a=1(a+b)=0b=1

Leave a Reply

Your email address will not be published. Required fields are marked *