Menu Close

find-the-coordinate-of-the-line-prese-nted-with-line-2x-3y-7-0-which-is-equadistance-from-points-4-8-and-7-1-




Question Number 80869 by MASANJAJ last updated on 07/Feb/20
find the coordinate of the line prese  nted with line 2x−3y+7=0.which is  equadistance from points (−4,8) and   (7,1)
findthecoordinateofthelinepresentedwithline2x3y+7=0.whichisequadistancefrompoints(4,8)and(7,1)
Commented by ajfour last updated on 07/Feb/20
(x+4)^2 +(((2x+7)/3)−8)^2     = (x−7)^2 +(((2x+7)/3)−1)^2   ⇒ 11(2x−3)=7(((4x+14)/3)−9)  66x−99=28x−91  ⇒   38x=8   ⇒  x=(4/(19))  y=(((8/(19))+7)/3) = ((141)/(57))=((47)/(19))  point is  ((4/(19)), ((47)/(19)))  .
(x+4)2+(2x+738)2=(x7)2+(2x+731)211(2x3)=7(4x+1439)66x99=28x9138x=8x=419y=819+73=14157=4719pointis(419,4719).
Commented by mr W last updated on 07/Feb/20
correct sir!
correctsir!
Answered by mr W last updated on 07/Feb/20
A(−4,8), B(7,1)  C=midpoint of AB  x_c =((−4+7)/2)=(3/2)  y_c =((8+1)/2)=(9/2)  inclination of AB=((1−8)/(7−(−4)))=−(7/(11))  bisector of AB:  y=(9/2)+(1/(−(−(7/(11)))))(x−(3/2))  ⇒y=(9/2)+((11)/7)(x−(3/2))=((11)/7)x+((15)/7)     { ((2x−3y+7=0)),((y=((11)/7)x+((15)/7))) :}  ⇒x=(4/(19))  ⇒y=((47)/(19))    ⇒the point on the line is ((4/(19)),((47)/(19))).
A(4,8),B(7,1)C=midpointofABxc=4+72=32yc=8+12=92inclinationofAB=187(4)=711bisectorofAB:y=92+1(711)(x32)y=92+117(x32)=117x+157{2x3y+7=0y=117x+157x=419y=4719thepointonthelineis(419,4719).

Leave a Reply

Your email address will not be published. Required fields are marked *