Menu Close

Find-the-cube-root-of-55-63-2-




Question Number 17018 by tawa tawa last updated on 29/Jun/17
Find the cube root of:   55 + 63 (√2)
Findthecuberootof:55+632
Commented by prakash jain last updated on 29/Jun/17
(a+b(√2))^3 =55+63(√2)  a^3 +3(√2)a^2 b+6b^2 a+2(√2)b^3 =55+63(√2)  a^3 +6b^2 a=55  (i)  3a^2 b+2b^3 =63  (ii)  2b^3 =3(21−a^2 b)  b integer implies b=3   9a^2 +54=63  a=1  check in (i)  1+54=55   ...(correct)  ((55+63(√2)))^(1/3) =1+3(√2)
(a+b2)3=55+632a3+32a2b+6b2a+22b3=55+632a3+6b2a=55(i)3a2b+2b3=63(ii)2b3=3(21a2b)bintegerimpliesb=39a2+54=63a=1checkin(i)1+54=55(correct)55+6323=1+32
Commented by tawa tawa last updated on 29/Jun/17
God bless you sir.
Godblessyousir.
Commented by mrW1 last updated on 30/Jun/17
can generally be said?  (a+b(√2))^n =c+d(√2)  (a+b(√3))^n =c+d(√3)  ......
cangenerallybesaid?(a+b2)n=c+d2(a+b3)n=c+d3
Commented by prakash jain last updated on 30/Jun/17
Not always.
Notalways.
Commented by prakash jain last updated on 30/Jun/17
if we change the question to  55+62(√2) the answer wont be  of the form a+b(√2).  i just tried this approach just  to see if a simple answer is possible.
ifwechangethequestionto55+622theanswerwontbeoftheforma+b2.ijusttriedthisapproachjusttoseeifasimpleanswerispossible.
Commented by mrW1 last updated on 30/Jun/17
is (a+b(√2))^n  not always of the form  c+d(√2) ?  (a+b(√2))^n =Σ_(k=0) ^n C_n ^k a^(n−k) (b(√2))^k   =C_n ^0 a^n +C_n ^2 a^(n−2) b^2 ((√2))^2 +C_n ^4 a^(n−4) b^4 ((√2))^4 +...  +C_n ^1 a^(n−1) b((√2))+C_n ^3 a^(n−3) b^3 ((√2))^3 +C_n ^5 a^(n−5) b^5 ((√2))^5 +...  =C_n ^0 a^n +2C_n ^2 a^(n−2) b^2 +2^2 C_n ^4 a^(n−4) b^4 +...  +C_n ^1 a^(n−1) b(√2)+2C_n ^3 a^(n−3) b^3 (√2)+2^2 C_n ^5 a^(n−5) b^5 (√2)+...  =[C_n ^0 a^n +2C_n ^2 a^(n−2) b^2 +2^2 C_n ^4 a^(n−4) b^4 +...]  +[C_n ^1 a^(n−1) b+2C_n ^3 a^(n−3) b^3 +2^2 C_n ^5 a^(n−5) b^5 +...](√2)  =c+d(√2)    a,b,c,d=integer
is(a+b2)nnotalwaysoftheformc+d2?(a+b2)n=nk=0Cnkank(b2)k=Cn0an+Cn2an2b2(2)2+Cn4an4b4(2)4++Cn1an1b(2)+Cn3an3b3(2)3+Cn5an5b5(2)5+=Cn0an+2Cn2an2b2+22Cn4an4b4++Cn1an1b2+2Cn3an3b32+22Cn5an5b52+=[Cn0an+2Cn2an2b2+22Cn4an4b4+]+[Cn1an1b+2Cn3an3b3+22Cn5an5b5+]2=c+d2a,b,c,d=integer
Commented by mrW1 last updated on 30/Jun/17
but (c+d(√2))^(1/n) ≠a+b(√2)    ???
but(c+d2)1na+b2???
Commented by tawa tawa last updated on 30/Jun/17
Thanks sirs. God bless you.
Thankssirs.Godblessyou.

Leave a Reply

Your email address will not be published. Required fields are marked *