Question Number 155571 by peter frank last updated on 02/Oct/21

Answered by JDamian last updated on 02/Oct/21

Commented by peter frank last updated on 02/Oct/21

Commented by puissant last updated on 02/Oct/21

Answered by puissant last updated on 02/Oct/21
![z^3 =1 ⇒ z=e^(i((2kπ)/3)) ; k∈[∣ 0;2 ∣] → k=0 ⇒ z= 1 → k=1 ⇒ z=e^(i((2π)/3)) →k=2 ⇒ z=e^(i((4π)/3)) = e^(−i((2π)/3)) let j=e^(i((2π)/3)) 1+j+j^2 = ((1−j^3 )/(1−j))= (((e^(i((2π)/3)) )^3 −1)/(e^(i((2π)/3)) −1))= 0... −−−−−−−−−−−−− j=e^(i((2π)/3)) = −(1/2)+((√3)/2)i and j^2 =e^(i((4π)/3)) = e^(−i((2π)/3)) = −(1/2)−((√3)/2)i.. 1+j+j^2 = 1−(1/2)+((√3)/2)i−(1/2)−((√3)/2)i=1−1=0 ⇒ 1+j+j^2 = 0...](https://www.tinkutara.com/question/Q155588.png)