Menu Close

Find-the-cubic-equation-whose-roots-are-the-radius-of-three-escribed-circles-in-term-of-inradius-circumradius-and-semiperimeter-




Question Number 19055 by Tinkutara last updated on 03/Aug/17
Find the cubic equation whose roots  are the radius of three escribed circles  in term of inradius, circumradius and  semiperimeter.
Findthecubicequationwhoserootsaretheradiusofthreeescribedcirclesintermofinradius,circumradiusandsemiperimeter.
Answered by behi.8.3.4.1.7@gmail.com last updated on 05/Aug/17
(x−r_a )(x−r_b )(x−r_c )=0  ⇒x^3 −(Σr_a )x^2 +(Σr_a r_b )x−Πr_a =0  1)A+B=π−C⇒tg(((A+B)/2))=tg((π/2)−(C/2))  ⇒((tg(A/2)+tg(B/2))/(1−tg(A/2)tg(B/2)))=(1/(tg(C/2)))⇒Σtg(A/2)tg(B/2)=1  2)Πtg(A/2)=(√((((p−b)(p−c))/(p(p−a))).(((p−a)(p−c))/(p(p−b))).(((p−a)(p−b))/(p(p−c)))))=  =(√((p(p−a)(p−b)(p−c))/p^4 ))=(S/p^2 )=(r/p)  3)Σtg(A/2)=Σ(((p−b)(p−c))/S)=((p^2 −p(b+c)+bc)/S)+  +((p^2 −p(a+c)+ac)/S)+((p^2 −p(a+b)+ab)/S)=  =((3p^2 −2p(a+b+c)+ab+bc+ca)/S)=  =((ab+bc+ca−p^2 )/S)=((4Rr+r^2 )/S)=((4R+r)/p)  4)r_a =p.tg(A/2)⇒ { ((Σr_a =pΣtg(A/2)=p.((4R+r)/p)=4R+r)),((Σr_a r_b =p^2 Σtg(A/2)tg(B/2)=p^2 )) :}  5)Πr_a =p^3 .Πtg(A/2)=p^3 .(r/p)=r.p^2   ⇒x^3 −(4R+r)x^2 +p^2 .x−r.p^2 =0
(xra)(xrb)(xrc)=0x3(Σra)x2+(Σrarb)xΠra=01)A+B=πCtg(A+B2)=tg(π2C2)tgA2+tgB21tgA2tgB2=1tgC2ΣtgA2tgB2=12)ΠtgA2=(pb)(pc)p(pa).(pa)(pc)p(pb).(pa)(pb)p(pc)==p(pa)(pb)(pc)p4=Sp2=rp3)ΣtgA2=Σ(pb)(pc)S=p2p(b+c)+bcS++p2p(a+c)+acS+p2p(a+b)+abS==3p22p(a+b+c)+ab+bc+caS==ab+bc+cap2S=4Rr+r2S=4R+rp4)ra=p.tgA2{Σra=pΣtgA2=p.4R+rp=4R+rΣrarb=p2ΣtgA2tgB2=p25)Πra=p3.ΠtgA2=p3.rp=r.p2\boldsymbolx3(4\boldsymbolR+\boldsymbolr)\boldsymbolx2+\boldsymbolp2.\boldsymbolx\boldsymbolr.\boldsymbolp2=0
Commented by Tinkutara last updated on 05/Aug/17
Thank you very much Sir!
ThankyouverymuchSir!ThankyouverymuchSir!
Commented by behi.8.3.4.1.7@gmail.com last updated on 05/Aug/17
corrected!
corrected!corrected!

Leave a Reply

Your email address will not be published. Required fields are marked *