Question Number 172022 by Mikenice last updated on 23/Jun/22
$${find}\:{the}\:{cubic}\:{of} \\ $$$$\sqrt[{\mathrm{3}}]{\mathrm{26}+\mathrm{15}\sqrt{\mathrm{3}}}\:\:\:+\:\sqrt[{\mathrm{3}}]{\mathrm{26}−\mathrm{15}\sqrt{\mathrm{3}}} \\ $$
Answered by Rasheed.Sindhi last updated on 23/Jun/22
$${Let}\:\sqrt[{\mathrm{3}}]{\mathrm{26}+\mathrm{15}\sqrt{\mathrm{3}}}\:\:\:+\:\sqrt[{\mathrm{3}}]{\mathrm{26}−\mathrm{15}\sqrt{\mathrm{3}}}\:={a} \\ $$$$\:{where}\:{a}\in\mathbb{R} \\ $$$$\left(\sqrt[{\mathrm{3}}]{\mathrm{26}+\mathrm{15}\sqrt{\mathrm{3}}}\:\:\:+\:\sqrt[{\mathrm{3}}]{\mathrm{26}−\mathrm{15}\sqrt{\mathrm{3}}}\:\right)^{\mathrm{3}} ={a}^{\mathrm{3}} \\ $$$$\begin{array}{|c|}{\left({a}+{b}\right)^{\mathrm{3}} ={a}^{\mathrm{3}} +{b}^{\mathrm{3}} +\mathrm{3}{ab}\left({a}+{b}\right)}\\\hline\end{array} \\ $$$$\mathrm{26}+\mathrm{15}\sqrt{\mathrm{3}}\:+\mathrm{26}−\mathrm{15}\sqrt{\mathrm{3}}\:+\mathrm{3}\left(\mathrm{26}+\mathrm{15}\sqrt{\mathrm{3}}\right)\left(\mathrm{26}−\mathrm{15}\sqrt{\mathrm{3}}\right)\left({a}\right)={a}^{\mathrm{3}} \\ $$$$\:\:\:\:\:\:\left(\mathrm{26}+\mathrm{15}\sqrt{\mathrm{3}}\right)\left(\mathrm{26}−\mathrm{15}\sqrt{\mathrm{3}}\right) \\ $$$$\:\:\:\:\:\:\:\:\:=\mathrm{26}^{\mathrm{2}} −\mathrm{3}\left(\mathrm{15}^{\mathrm{2}} \right)=\mathrm{676}−\mathrm{675}=\mathrm{1} \\ $$$$\mathrm{52}+\mathrm{3}\left(\mathrm{1}\right)\left({a}\right)={a}^{\mathrm{3}} \\ $$$${a}^{\mathrm{3}} −\mathrm{3}{a}−\mathrm{52}=\mathrm{0} \\ $$$$\left({a}−\mathrm{4}\right)\left({a}^{\mathrm{2}} +\mathrm{4}{a}+\mathrm{13}\right)=\mathrm{0} \\ $$$$\:{a}=\mathrm{4}\:\mid\:{a}=\frac{−\mathrm{4}\pm\sqrt{\mathrm{16}−\mathrm{52}}}{\mathrm{2}}=\frac{−\mathrm{4}\pm\mathrm{6}{i}}{\mathrm{2}}=−\mathrm{2}\pm\mathrm{3}{i}\notin\mathbb{R}\left(\mathcal{R}{ejected}\right) \\ $$$${a}=\mathrm{4}\:\left({only}\:{solution}\right) \\ $$
Commented by Mikenice last updated on 23/Jun/22
$${thanks}\:{sir} \\ $$
Commented by mr W last updated on 23/Jun/22
$${real}+{real}={real} \\ $$$$\sqrt[{\mathrm{3}}]{\mathrm{26}+\mathrm{15}\sqrt{\mathrm{3}}}\:\:\:+\:\sqrt[{\mathrm{3}}]{\mathrm{26}−\mathrm{15}\sqrt{\mathrm{3}}}\:={real} \\ $$$$\Rightarrow{answer}\:{can}\:{only}\:{be}\:{real}! \\ $$
Commented by Rasheed.Sindhi last updated on 23/Jun/22
$$\mathbb{T}\boldsymbol{\mathrm{han}}\Bbbk\boldsymbol{\mathrm{s}}\:\boldsymbol{\mathrm{sir}}!\:\mathrm{I}'\mathrm{m}\:\mathrm{going}\:\mathrm{to}\:\mathrm{correct}\:\mathrm{now}. \\ $$
Commented by Mikenice last updated on 23/Jun/22
$${but}\:{sir}\left[{you}\:{can}\:{show}\:{your}\:{own}\:\right. \\ $$$${solution}\:{to}\:{that}\:{problem}. \\ $$
Commented by mr W last updated on 23/Jun/22
$${i}\:{don}'{t}\:{have}\:{an}\:{other}\:{solution}.\:{the} \\ $$$${solution}\:{from}\:{rasheed}\:{is}\:{very}\:{good}. \\ $$
Commented by Mikenice last updated on 23/Jun/22
$${okay}\:{sir} \\ $$