Menu Close

find-the-cubic-of-26-15-3-1-3-26-15-3-1-3-




Question Number 172022 by Mikenice last updated on 23/Jun/22
find the cubic of  ((26+15(√3)))^(1/3)    + ((26−15(√3)))^(1/3)
$${find}\:{the}\:{cubic}\:{of} \\ $$$$\sqrt[{\mathrm{3}}]{\mathrm{26}+\mathrm{15}\sqrt{\mathrm{3}}}\:\:\:+\:\sqrt[{\mathrm{3}}]{\mathrm{26}−\mathrm{15}\sqrt{\mathrm{3}}} \\ $$
Answered by Rasheed.Sindhi last updated on 23/Jun/22
Let ((26+15(√3)))^(1/3)    + ((26−15(√3)))^(1/3)  =a   where a∈R  (((26+15(√3)))^(1/3)    + ((26−15(√3)))^(1/3)  )^3 =a^3    determinant ((((a+b)^3 =a^3 +b^3 +3ab(a+b))))  26+15(√3) +26−15(√3) +3(26+15(√3))(26−15(√3))(a)=a^3         (26+15(√3))(26−15(√3))           =26^2 −3(15^2 )=676−675=1  52+3(1)(a)=a^3   a^3 −3a−52=0  (a−4)(a^2 +4a+13)=0   a=4 ∣ a=((−4±(√(16−52)))/2)=((−4±6i)/2)=−2±3i∉R(Rejected)  a=4 (only solution)
$${Let}\:\sqrt[{\mathrm{3}}]{\mathrm{26}+\mathrm{15}\sqrt{\mathrm{3}}}\:\:\:+\:\sqrt[{\mathrm{3}}]{\mathrm{26}−\mathrm{15}\sqrt{\mathrm{3}}}\:={a} \\ $$$$\:{where}\:{a}\in\mathbb{R} \\ $$$$\left(\sqrt[{\mathrm{3}}]{\mathrm{26}+\mathrm{15}\sqrt{\mathrm{3}}}\:\:\:+\:\sqrt[{\mathrm{3}}]{\mathrm{26}−\mathrm{15}\sqrt{\mathrm{3}}}\:\right)^{\mathrm{3}} ={a}^{\mathrm{3}} \\ $$$$\begin{array}{|c|}{\left({a}+{b}\right)^{\mathrm{3}} ={a}^{\mathrm{3}} +{b}^{\mathrm{3}} +\mathrm{3}{ab}\left({a}+{b}\right)}\\\hline\end{array} \\ $$$$\mathrm{26}+\mathrm{15}\sqrt{\mathrm{3}}\:+\mathrm{26}−\mathrm{15}\sqrt{\mathrm{3}}\:+\mathrm{3}\left(\mathrm{26}+\mathrm{15}\sqrt{\mathrm{3}}\right)\left(\mathrm{26}−\mathrm{15}\sqrt{\mathrm{3}}\right)\left({a}\right)={a}^{\mathrm{3}} \\ $$$$\:\:\:\:\:\:\left(\mathrm{26}+\mathrm{15}\sqrt{\mathrm{3}}\right)\left(\mathrm{26}−\mathrm{15}\sqrt{\mathrm{3}}\right) \\ $$$$\:\:\:\:\:\:\:\:\:=\mathrm{26}^{\mathrm{2}} −\mathrm{3}\left(\mathrm{15}^{\mathrm{2}} \right)=\mathrm{676}−\mathrm{675}=\mathrm{1} \\ $$$$\mathrm{52}+\mathrm{3}\left(\mathrm{1}\right)\left({a}\right)={a}^{\mathrm{3}} \\ $$$${a}^{\mathrm{3}} −\mathrm{3}{a}−\mathrm{52}=\mathrm{0} \\ $$$$\left({a}−\mathrm{4}\right)\left({a}^{\mathrm{2}} +\mathrm{4}{a}+\mathrm{13}\right)=\mathrm{0} \\ $$$$\:{a}=\mathrm{4}\:\mid\:{a}=\frac{−\mathrm{4}\pm\sqrt{\mathrm{16}−\mathrm{52}}}{\mathrm{2}}=\frac{−\mathrm{4}\pm\mathrm{6}{i}}{\mathrm{2}}=−\mathrm{2}\pm\mathrm{3}{i}\notin\mathbb{R}\left(\mathcal{R}{ejected}\right) \\ $$$${a}=\mathrm{4}\:\left({only}\:{solution}\right) \\ $$
Commented by Mikenice last updated on 23/Jun/22
thanks sir
$${thanks}\:{sir} \\ $$
Commented by mr W last updated on 23/Jun/22
real+real=real  ((26+15(√3)))^(1/3)    + ((26−15(√3)))^(1/3)  =real  ⇒answer can only be real!
$${real}+{real}={real} \\ $$$$\sqrt[{\mathrm{3}}]{\mathrm{26}+\mathrm{15}\sqrt{\mathrm{3}}}\:\:\:+\:\sqrt[{\mathrm{3}}]{\mathrm{26}−\mathrm{15}\sqrt{\mathrm{3}}}\:={real} \\ $$$$\Rightarrow{answer}\:{can}\:{only}\:{be}\:{real}! \\ $$
Commented by Rasheed.Sindhi last updated on 23/Jun/22
Thanks sir! I′m going to correct now.
$$\mathbb{T}\boldsymbol{\mathrm{han}}\Bbbk\boldsymbol{\mathrm{s}}\:\boldsymbol{\mathrm{sir}}!\:\mathrm{I}'\mathrm{m}\:\mathrm{going}\:\mathrm{to}\:\mathrm{correct}\:\mathrm{now}. \\ $$
Commented by Mikenice last updated on 23/Jun/22
but sir[you can show your own   solution to that problem.
$${but}\:{sir}\left[{you}\:{can}\:{show}\:{your}\:{own}\:\right. \\ $$$${solution}\:{to}\:{that}\:{problem}. \\ $$
Commented by mr W last updated on 23/Jun/22
i don′t have an other solution. the  solution from rasheed is very good.
$${i}\:{don}'{t}\:{have}\:{an}\:{other}\:{solution}.\:{the} \\ $$$${solution}\:{from}\:{rasheed}\:{is}\:{very}\:{good}. \\ $$
Commented by Mikenice last updated on 23/Jun/22
okay sir
$${okay}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *