Menu Close

Find-the-curvature-vector-and-its-magnitude-at-any-point-r-of-the-curve-r-acos-asin-a-Show-the-locus-of-the-feet-of-the-from-the-origin-to-the-tangent-is-a-curve-that-complete




Question Number 98325 by bemath last updated on 13/Jun/20
Find the curvature vector and  its magnitude at any point   r^→  = (θ) of the curve r^→ = (acos θ,asin θ,aθ)  .Show the locus of the feet of the  ⊥ from the origin to the tangent   is a curve that completely lies  on the hyperbolic x^2 +y^2 −z^2 = a^2
Findthecurvaturevectoranditsmagnitudeatanypointr=(θ)ofthecurver=(acosθ,asinθ,aθ).Showthelocusofthefeetofthefromtheorigintothetangentisacurvethatcompletelyliesonthehyperbolicx2+y2z2=a2
Answered by john santu last updated on 13/Jun/20
(dr^→ /dθ) = −asin θ i^�  +acos θ j^� +ak^�   (ds/dθ) = ∣(dr^→ /dθ)∣ = (√2) a  τ^→  = ((dr^→ /dθ)/(ds/dθ)) = (1/( (√2) )) (−sin θ i^� +cos θ j^� + k^� )  (dτ^→ /dθ) = (1/( (√2))) (−cos θ i^�  −sin θ j^�  )  curvature vector , K^→  = (dτ^→ /ds)   K^→  = ((dτ^→ /dθ)/(ds/dθ)) = (1/(a(√2))) ×(1/( (√2))) (−cos θ i^� −sin θ j^� )  = −((cos θ i^� )/(2a)) −((sin θ j^� )/(2a))  magnitude ∣K∣ = (1/(2a)) .
drdθ=asinθi^+acosθj^+ak^dsdθ=drdθ=2aτ=drdθdsdθ=12(sinθi^+cosθj^+k^)dτdθ=12(cosθi^sinθj^)curvaturevector,K=dτdsK=dτ/dθds/dθ=1a2×12(cosθi^sinθj^)=cosθi^2asinθj^2amagnitudeK=12a.
Commented by bemath last updated on 13/Jun/20
thank you
thankyou

Leave a Reply

Your email address will not be published. Required fields are marked *