Menu Close

find-the-decomposition-in-C-x-then-R-x-for-the-rationsl-fraction-F-x-1-x-2n-1-with-n-integer-not-0-




Question Number 26583 by abdo imad last updated on 27/Dec/17
find the decomposition in C[x] then R[x]  for the rationsl fraction  F(x)=  ((1 )/(x^(2n) −1))  .with n integer not 0
findthedecompositioninC[x]thenR[x]fortherationslfractionF(x)=1x2n1.withnintegernot0
Commented by abdo imad last updated on 28/Dec/17
let find the poles of F   let put z=rcosθ  z^(2n) =1⇔   2nθ  =2kπ and  r=1  so the poles of are   z_k = e^((ikπ)/n)   with  k from [[0,2n−1]]  F(x)  =Σ_(k=0) ^(2n−1)   (α_k /(x−z_k ))    and  α_k =   (1/(2n z_k ^(2n−1) )) = (1/(2n)) z_k   ⇒     F(x)= (1/(2n)) Σ_(k=0) ^(2n−1)  (z_k /(x−z_k ))  is the decomposition of F(x)  in C[x].
letfindthepolesofFletputz=rcosθz2n=12nθ=2kπandr=1sothepolesofarezk=eikπnwithkfrom[[0,2n1]]F(x)=k=02n1αkxzkandαk=12nzk2n1=12nzkF(x)=12nk=02n1zkxzkisthedecompositionofF(x)inC[x].
Commented by abdo imad last updated on 28/Dec/17
we have F(x)= (1/(2n)) Σ_(k=0) ^(2n−1)  ((zk)/(x−x_k ))  but  z_0 =1,    z_1 =e^(i(π/n))    ,   z_2 =e^(i((2π)/n))    , z_(n−1) =e^(i((n−1)/n)π)    z_n   =−1  z_(n+1) =e^(i(((n+1)π)/n))   =z_1 ^−       ,  z_(n+2) = e^(i(((n+2)π)/n))   =z_2 ^−    , z_(n−1)   =z_1 ^−   ⇒   F(x)=  (1/(2n))(    (z_0 /(x−z_0 )) + (z_n /(x−z_n )) +   Σ_(k=1) ^(k=n−1) (  (z_k /(x−z_k )) + (z_k ^− /(x−z_k ^− ))))  = (1/(2n))(  (1/(x−1)) −  (1/(x+1)))  +  (1/(2n))Σ_(k=1) ^(n−1) (((z_k  +z_k ^− )x −2)/(x^2  −2 cos(((kπ)/n))x+1))  F(x)=  (1/(2n)) ( (1/(x−1)) − (1/(x+1))) + (1/n) Σ_(k=1) ^(k=n−1) (( cos(((kπ)/n))x −1)/(x^(2 ) −2cos(((kπ)/n))x+1))  is the decomposition of F(x) inside R[x].
wehaveF(x)=12nk=02n1zkxxkbutz0=1,z1=eiπn,z2=ei2πn,zn1=ein1nπzn=1zn+1=ei(n+1)πn=z1,zn+2=ei(n+2)πn=z2,zn1=z1F(x)=12n(z0xz0+znxzn+k=1k=n1(zkxzk+zkxzk))=12n(1x11x+1)+12nk=1n1(zk+zk)x2x22cos(kπn)x+1F(x)=12n(1x11x+1)+1nk=1k=n1cos(kπn)x1x22cos(kπn)x+1isthedecompositionofF(x)insideR[x].

Leave a Reply

Your email address will not be published. Required fields are marked *