Menu Close

Find-the-derivatives-f-x-of-the-following-function-with-respect-to-x-f-x-Sin-pi-Sinx-pi-Cosx-Mastermind-




Question Number 180839 by Mastermind last updated on 17/Nov/22
Find the derivatives f^′ (x) of the  following function with respect to x:  f(x)=Sin(π^(Sinx) +π^(Cosx) ).    Mastermind
Findthederivativesf(x)ofthefollowingfunctionwithrespecttox:f(x)=Sin(πSinx+πCosx).Mastermind
Answered by saboorhalimi last updated on 17/Nov/22
 Solution by:  Saboor Halimi   f(x)=Sin(π^(sinx) +π^(cos(x))    f ′ (x)= (π^(sin(x)) cos(x)ln(π)−π^(cosx) sinxln(π))cos(π^(sin(x)) +π^(cos(x)) )
Solutionby:SaboorHalimif(x)=Sin(πsinx+πcos(x)f(x)=(πsin(x)cos(x)ln(π)πcosxsinxln(π))cos(πsin(x)+πcos(x))
Commented by Mastermind last updated on 17/Nov/22
With full details explanation pls
Withfulldetailsexplanationpls
Commented by Acem last updated on 17/Nov/22
(e^x )′ = x′ e^x  ln e= 1×e^x  ×1= e^x    (a^u )′= ln a× u′×a^u     here a= π   (cos u)′ = −u′ sin u   (sin u)′ = u^′  cos u      [sin (π^(sin x) + π^(cos x) )]^′  = (π^(sin x) + π^(cos x) )′ .cos (π^(sin x) + π^(cos x) )  (π^(sin x) + π^(cos x) )′ = (π^(sin x) )^′  + (π^(cos x) )′        (a^u )′ look above   = ln π.cos x π^( sin x)  − ln π . sin x . π^( cos x)   f(x)′= ln π(cos x π^( sin x)  −  sin x . π^( cos x) )cos (π^(sin x) + π^(cos x) )
(ex)=xexlne=1×ex×1=ex(au)=lna×u×auherea=π(cosu)=usinu(sinu)=ucosu[sin(πsinx+πcosx)]=(πsinx+πcosx).cos(πsinx+πcosx)(πsinx+πcosx)=(πsinx)+(πcosx)(au)lookabove=lnπ.cosxπsinxlnπ.sinx.πcosxf(x)=lnπ(cosxπsinxsinx.πcosx)cos(πsinx+πcosx)

Leave a Reply

Your email address will not be published. Required fields are marked *