Menu Close

Find-the-differential-equations-i-log-dy-dx-ax-by-ii-x-cos-y-dy-x-e-x-log-x-e-x-dx-




Question Number 83639 by niroj last updated on 04/Mar/20
      Find the differential equations:     (i) log((dy/dx))=ax+by     (ii) x cos y dy=(x e^x log x +e^x )dx
Findthedifferentialequations:(i)log(dydx)=ax+by(ii)xcosydy=(xexlogx+ex)dx
Answered by TANMAY PANACEA last updated on 05/Mar/20
1)ln((dy/dx))=ax+by  (dy/dx)=e^(ax+by)   (dy/e^(by) )=e^(ax) dx  ∫e^(−by) dy=∫e^(ax) dx  (e^(−by) /(−b))=(e^(ax) /a)+c
1)ln(dydx)=ax+bydydx=eax+bydyeby=eaxdxebydy=eaxdxebyb=eaxa+c
Commented by niroj last updated on 05/Mar/20
its ★ great
itsgreat
Commented by TANMAY PANACEA last updated on 05/Mar/20
most welcome
mostwelcome
Answered by TANMAY PANACEA last updated on 05/Mar/20
2)xcosydy−(xe^x lnx+e^x )dx  ∫cosydy−∫(e^x lnx+(e^x /x))dx=0  ∫cosydy−∫(d/dx)(e^x lnx)dx=0  siny−e^x lnx=c
2)xcosydy(xexlnx+ex)dxcosydy(exlnx+exx)dx=0cosydyddx(exlnx)dx=0sinyexlnx=c
Commented by niroj last updated on 05/Mar/20
 thank you panacea.
thankyoupanacea.
Commented by TANMAY PANACEA last updated on 05/Mar/20
most welcome
mostwelcome
Answered by M±th+et£s last updated on 05/Mar/20
log((dy/dx))=ax+by→log(p)=ax+by→y=(1/b)(log(p)−ax)  Diff. w.r.t. x→p=(1/b)(((d log(p))/dx) −a)  p=(1/b)((1/p) (dp/dx)−a)→(dx/dp)=(1/(p(a+bp)))=(1/a) (1/p)−(b/a) (1/(a+bp))  x=(1/a)ln∣p∣−(1/a)ln∣a+bp∣+(1/a)ln(c)  x=(1/a)ln(((cp)/(a+bp)))→e^(ax) =((cp)/(a+bp))→p=((ae^(ax) )/(c−be^(ax) ))  y= −((ln(c−be^(ax) ))/b)
log(dydx)=ax+bylog(p)=ax+byy=1b(log(p)ax)Diff.w.r.t.xp=1b(dlog(p)dxa)p=1b(1pdpdxa)dxdp=1p(a+bp)=1a1pba1a+bpx=1alnp1alna+bp+1aln(c)x=1aln(cpa+bp)eax=cpa+bpp=aeaxcbeaxy=ln(cbeax)b
Answered by M±th+et£s last updated on 05/Mar/20
cos(y)dy=((xe^x  log(x)+e^x )/x)dx  →sin(y)=∫(e^x log(x)+(e^x /x))dx=∫e^x log(x)dx+e^x log(x)−∫e^x  log(x) dx  sin(y)=e^x log(x)+c→y=sin^(−1) (c+e^x log(x))
cos(y)dy=xexlog(x)+exxdxsin(y)=(exlog(x)+exx)dx=exlog(x)dx+exlog(x)exlog(x)dxsin(y)=exlog(x)+cy=sin1(c+exlog(x))

Leave a Reply

Your email address will not be published. Required fields are marked *