Menu Close

find-the-distance-of-point-2-1-2-to-plane-passing-through-points-1-2-3-0-4-2-and-1-3-4-




Question Number 118747 by bemath last updated on 19/Oct/20
find the distance of point (2,1,−2) to plane  passing through points (−1,2,−3);  (0,−4,−2) and (1,3,4).
findthedistanceofpoint(2,1,2)toplanepassingthroughpoints(1,2,3);(0,4,2)and(1,3,4).
Answered by benjo_mathlover last updated on 19/Oct/20
Equation of plane passing through points  (x_1 ,y_1 ,z_1 );(x_2 ,y_2 ,z_2 ); (x_3 ,y_3 ,z_3 ) is    determinant (((x−x_1      y−y_1       z−z_1 )),((x_2 −x_1    y_2 −y_1     z_2 −z_1 )),((x_3 −x_1    y_3 −y_1     z_3 −z_1 )))= 0  so we get equation of plane is    determinant (((x+1     y−2      z+3)),((    1           −6         1 )),((    2             1            7)))= 0  (x+1)(−43)−(y−2)(5)+(z+3)(13) = 0  −43x−43−5y+10+13z+39 = 0  ⇒43x+5y−13z−6=0  We want to compute the distance of   point (2,1,−2) to plane 43x+5y−13z−6=0  by the formula ⇒d = ((∣43(2)+5(1)−13(−2)−6 ∣)/( (√(43^2 +5^2 +(−13)^2 ))))  ⇒d = ((111)/( (√(2043))))
Equationofplanepassingthroughpoints(x1,y1,z1);(x2,y2,z2);(x3,y3,z3)is|xx1yy1zz1x2x1y2y1z2z1x3x1y3y1z3z1|=0sowegetequationofplaneis|x+1y2z+3161217|=0(x+1)(43)(y2)(5)+(z+3)(13)=043x435y+10+13z+39=043x+5y13z6=0Wewanttocomputethedistanceofpoint(2,1,2)toplane43x+5y13z6=0bytheformulad=43(2)+5(1)13(2)6432+52+(13)2d=1112043
Answered by 1549442205PVT last updated on 19/Oct/20
Suppose A(−1,2,−3),B(0,−4,−2)  C(1,3,4)⇒AB^(→) =(1,−6,1),AC^(→) =(2,1,7)  The normal vector of the plane P is  n^→ =AB^(→) ×AC^(→) =( (((−6),1),(1,7) ) , ((1,1),(7,2) ), ((1,(−6)),(2,1) ))  =(−43,−5,13).Therefore,the equation of  P pass through A(−1,2,−3) with the  normal n^(→) =(−44,−5,13)is:  −43(x+1)−5(y−2)+13(z+3)=0  ⇔−43x−5y+13z+6=0  The distance from the pointM (2,1,−2)  to P is MH=((∣−43.2−5.1+13(−2)+6∣)/( (√(43^2 +5^2 +13^2 ))))  =((111)/(3(√(227))))
SupposeA(1,2,3),B(0,4,2)C(1,3,4)AB=(1,6,1),AC=(2,1,7)ThenormalvectoroftheplanePisn=AB×AC=((6117),(1172),(1621))=(43,5,13).Therefore,theequationofPpassthroughA(1,2,3)withthenormaln=(44,5,13)is:43(x+1)5(y2)+13(z+3)=043x5y+13z+6=0ThedistancefromthepointM(2,1,2)toPisMH=43.25.1+13(2)+6432+52+132=1113227
Answered by mr W last updated on 19/Oct/20
Commented by mr W last updated on 19/Oct/20
P(2,1,−2)  A(−1,2,−3)  B(0,−4,−2)  C(1,3,4)  AB^(→) =(1,−6,1)  AC^(→) =(2,1,7)  AD^(→) =AB^(→) ×AC^(→) =(1,−6,1)×(2,1,7)  =(−43,−5,13)  AP^(→) =(3,−1,1)  PP′=AQ=((∣AP^(→) ∙AD^(→) ∣)/(∣AD^(→) ∣))  =((∣(3,−1,1)∙(−43,−5,13)∣)/( (√((−43)^2 +(−5)^2 +13^2 ))))  =((∣−3×43+1×5+1×13∣)/( 3(√(227))))  =((37)/( (√(227))))
P(2,1,2)A(1,2,3)B(0,4,2)C(1,3,4)AB=(1,6,1)AC=(2,1,7)AD=AB×AC=(1,6,1)×(2,1,7)=(43,5,13)AP=(3,1,1)PP=AQ=APADAD=(3,1,1)(43,5,13)(43)2+(5)2+132=3×43+1×5+1×133227=37227
Answered by ajfour last updated on 19/Oct/20
OA=−i+2j−3k  OB=−4j−2k  OC=i+3j+4k    AB= i−6j+k   ;  BC=i+7j+6k  n^�  =AB×BC = determinant ((i,j,k),(1,(−6),1),(1,7,6))     = −43i−5j+13k  distance of P (2,1,−2)  we first  find AP = 3i−j+k  . Now     =  ((AP.n^� )/(∣n^� ∣)) = ∣(((3i−j+k).(−43i−5j+13k))/( (√(43^2 +5^2 +13^2 ))))∣     = ((∣−129+5+13∣)/( (√(2043)))) = ((111)/( (√(2043))))  = ((37)/( (√(227)))) .
OA=i+2j3kOB=4j2kOC=i+3j+4kAB=i6j+k;BC=i+7j+6kn¯=AB×BC=|ijk161176|=43i5j+13kdistanceofP(2,1,2)wefirstfindAP=3ij+k.Now=AP.n¯n¯=(3ij+k).(43i5j+13k)432+52+132=129+5+132043=1112043=37227.

Leave a Reply

Your email address will not be published. Required fields are marked *