Menu Close

find-the-domain-of-thefunction-f-x-1-x-2-x-2-where-is-the-fractional-part-function-




Question Number 192852 by York12 last updated on 29/May/23
  find the domain of thefunction  f(x) = (1/( (√(x^2 −{x}^2 ))))     where {.} is the fractional part function.
findthedomainofthefunctionf(x)=1x2{x}2where{.}isthefractionalpartfunction.
Commented by York12 last updated on 30/May/23
the answer is  (−∞−1) ∪ [−1 −(1/2)) ∪ [1 , ∞ )
theansweris(1)[112)[1,)
Commented by MM42 last updated on 30/May/23
(−∞,−1)∪[−1,−(1/2)]∪[1,∞)=(−∞,−(1/2)]∪⌈1,∞)
(,1)[1,12][1,)=(,12]1,)
Answered by MM42 last updated on 29/May/23
D=(−∞,−(1/2))∪[1,∞)
D=(,12)[1,)
Commented by York12 last updated on 30/May/23
  How do you define {x} for x<0?  {−1.3}=−.3 is what I learned but I′ve  also seen {−1.3}=.7  {x}=x−⌊x⌋  for example x=−3.4  {−3.5}= −3.4 − ⌊−3.4⌋ = −3.4 +4 = .6
Howdoyoudefine{x}forx<0?{1.3}=.3iswhatIlearnedbutIvealsoseen{1.3}=.7{x}=xxforexamplex=3.4{3.5}=3.43.4=3.4+4=.6
Commented by MM42 last updated on 30/May/23
In authoritative books and mathematical references ,the following difination is use   correct part. [x]=x−{x}   ;    0≤{x}<1  therfore  always   0≤ {x}<1
Inauthoritativebooksandmathematicalreferences,thefollowingdifinationisusecorrectpart.[x]=x{x};0{x}<1therforealways0{x}<1
Commented by York12 last updated on 30/May/23
yeah sir exactly
yeahsirexactly
Commented by York12 last updated on 30/May/23
  (−∞,−1)∪[−1,−(1/2)]∪[1,∞)=(−∞,−(1/2)]∪⌈1,∞)  thanks sir yeah you are right
(,1)[1,12][1,)=(,12]1,)thankssiryeahyouareright
Commented by MM42 last updated on 30/May/23
good luck
goodluck
Answered by witcher3 last updated on 31/May/23
x^2 >{x}^2   x=[x]+{x}  if ∣x∣≥1⇒x^2 −1≥x^2 −{x}^2 >0  {x}∈[0,1[  if x∈]−1,1[  x∈]−1,0[  x=−1+{x}⇒  x^2 −{x}^2 =1−2{x}>0⇒{x}<(1/2)  ⇒x<−(1/2)⇒x∈]−1,−(1/2)[  if 1>x≥0  ⇒x={x}⇒x−{x}=0  ⇒D_f =]−∞,−(1/2)[∪[1,∞[
x2>{x}2x=[x]+{x}ifx∣⩾1x21x2{x}2>0{x}[0,1[ifx]1,1[x]1,0[x=1+{x}x2{x}2=12{x}>0{x}<12x<12x]1,12[if1>x0x={x}x{x}=0Df=],12[[1,[

Leave a Reply

Your email address will not be published. Required fields are marked *