Menu Close

Find-the-equation-of-a-circle-which-touches-the-line-x-3y-13-0-and-passes-through-the-points-6-3-and-4-1-




Question Number 170890 by nadovic last updated on 02/Jun/22
Find the equation of a circle which  touches the line x−3y+13 = 0   and  passes through the points (6, 3)  and (4, −1).
Findtheequationofacirclewhichtouchesthelinex3y+13=0andpassesthroughthepoints(6,3)and(4,1).
Answered by aleks041103 last updated on 02/Jun/22
let the eqn be:  c:(x−a)^2 +(y−b)^2 =r^2   then  (6−a)^2 +(3−b)^2 =r^2   (4−a)^2 +(1+b)^2 =r^2   ⇒(6−a−4+a)(6−a+4−a)+(3−b−1−b)(3−b+1+b)=0  ⇒2(10−2a)+4(2−2b)=0  5−a+2−2b=0  ⇒a=7−2b  ⇒(4−7+2b)^2 +(1+b)^2 =r^2   (2b−3)^2 +(1+b)^2 =r^2   4b^2 −12b+9+b^2 +2b+1=r^2   ⇒5b^2 −10b+10=r^2   ⇒c:(x+2b−7)^2 +(y−b)^2 =5b^2 −10b+10  x^2 +4b^2 +49+4bx−14x−28b+y^2 −2yb+b^2 =5b^2 −10b+10  x^2 +y^2 +(4b−14)x−2by+5b^2 −28b+49=5b^2 −10b+10  ⇒c:x^2 +y^2 +(4b−14)x−2by−18b+39=0  to touch line means for the system  to have only one solution  ⇒x−3y+13=0  ⇒x=3y−13  ⇒x^2 =9y^2 −78y+169  ⇒10y^2 −78y+169+(4b−14)(3y−13)−2by−18b+39=0  (4b−14)(3y−13)=12by−52b−42y+182  ⇒10y^2 +(−78+12b−42−2b)y+(169−52b+182−18b+39)=0  10y^2 +(10b−120)y+(390−70b)=0  y^2 +(b−12)y+(39−7b)=0  only  one sol  ⇒D=(b−12)^2 −4(39−7b)=0  ⇒b^2 −24b+144+28b−156=0  b^2 +4b−12=0  (b−2)(b+6)=0  ⇒b=−6,2  ⇒a=19,3 (a=7−2b)  ⇒r^2 =5(36+12+2),5(4−4+2) (r^2 =5(b^2 −2b+2))  ⇒r=5(√(10)),(√(10))  ⇒c_1 :(x−19)^2 +(y+6)^2 =250  ⇒c_2 :(x−3)^2 +(y−2)^2 =10
lettheeqnbe:c:(xa)2+(yb)2=r2then(6a)2+(3b)2=r2(4a)2+(1+b)2=r2(6a4+a)(6a+4a)+(3b1b)(3b+1+b)=02(102a)+4(22b)=05a+22b=0a=72b(47+2b)2+(1+b)2=r2(2b3)2+(1+b)2=r24b212b+9+b2+2b+1=r25b210b+10=r2c:(x+2b7)2+(yb)2=5b210b+10x2+4b2+49+4bx14x28b+y22yb+b2=5b210b+10x2+y2+(4b14)x2by+5b228b+49=5b210b+10c:x2+y2+(4b14)x2by18b+39=0totouchlinemeansforthesystemtohaveonlyonesolutionx3y+13=0x=3y13x2=9y278y+16910y278y+169+(4b14)(3y13)2by18b+39=0(4b14)(3y13)=12by52b42y+18210y2+(78+12b422b)y+(16952b+18218b+39)=010y2+(10b120)y+(39070b)=0y2+(b12)y+(397b)=0onlyonesolD=(b12)24(397b)=0b224b+144+28b156=0b2+4b12=0(b2)(b+6)=0b=6,2a=19,3(a=72b)r2=5(36+12+2),5(44+2)(r2=5(b22b+2))r=510,10c1:(x19)2+(y+6)2=250c2:(x3)2+(y2)2=10
Commented by aleks041103 last updated on 02/Jun/22
Commented by nadovic last updated on 03/Jun/22
Thank you Sir
ThankyouSir
Answered by cortano1 last updated on 03/Jun/22
let (a,b) is the center point of circle  (1)(√((a−6)^2 +(b−3)^2 )) =(√((a−4)^2 +(b+1)^2 ))  ⇒−12a−6b+36+9=−8a+2b+16+1  ⇒−4a−8b=−28 ; a+2b=7; a=7−2b  (2) ((∣a−3b+13∣)/( (√(10)))) =(√((a−4)^2 +(b+1)^2 ))  ⇒((∣20−5b∣)/( (√(10)))) =(√((3−2b)^2 +(b+1)^2 ))  ⇒∣20−5b∣=(√(10)) (√(5b^2 −10b+10))  ⇒∣4−b∣=(√(2b^2 −4b+4))  ⇒b^2 −8b+16=2b^2 −4b+4  ⇒b^2 +4b−12=0 ;  { ((b=−6 ∧ a=19)),((b=2 ∧ a=3)) :}  C_1 (19,−6)  C_2 (3,2)
let(a,b)isthecenterpointofcircle(1)(a6)2+(b3)2=(a4)2+(b+1)212a6b+36+9=8a+2b+16+14a8b=28;a+2b=7;a=72b(2)a3b+1310=(a4)2+(b+1)2205b10=(32b)2+(b+1)2⇒∣205b∣=105b210b+10⇒∣4b∣=2b24b+4b28b+16=2b24b+4b2+4b12=0;{b=6a=19b=2a=3C1(19,6)C2(3,2)
Commented by nadovic last updated on 03/Jun/22
Thank you Sir
ThankyouSir

Leave a Reply

Your email address will not be published. Required fields are marked *