Menu Close

Find-the-equation-of-circle-in-complex-form-which-touches-iz-z-1-i-0-and-for-which-the-lines-1-i-z-1-i-z-and-1-i-z-i-1-z-4i-0-are-normals-




Question Number 20550 by Tinkutara last updated on 28/Aug/17
Find the equation of circle in complex  form which touches iz + z^�  + 1 + i = 0  and for which the lines (1 − i)z =  (1 + i)z^�  and (1 + i)z + (i − 1)z^�  − 4i = 0  are normals.
Findtheequationofcircleincomplexformwhichtouchesiz+z¯+1+i=0andforwhichthelines(1i)z=(1+i)z¯and(1+i)z+(i1)z¯4i=0arenormals.
Answered by ajfour last updated on 30/Aug/17
Center of circle lies on both the   normals: let center be z_0 .  ⇒   (1+i)z_0 −(1−i)z_0 ^� =4i         (1−i)z_0 −(1+i)z_0 ^�  =0  adding:       2z_0 −2z_0 ^� =4i                  or   z_0 −z_0 ^� =2i    ....(i)  subtracting:   2iz_0 +2iz_0 ^� =4i                  or  z_0 +z_0 ^� =2      ....(ii)  adding (i) and (ii):                  z_0  = 1+i  Hence equation of circle can be  assumed to be:     ∣z−z_0 ∣=r  and let given tangent  to circle touches it at z_1 .  Then   ∣z_1 −z_0 ∣=r  where (z_0 =1+i)  or    (z_1 −z_0 )(z_1 ^� −z_0 ^� )=r^2     ...(iii)  from equation of tangent      iz_1 +z_1 ^� +1+i=0  ⇒   z_1 ^� =−(iz_1 +1+i)  substituting in (iii) withz_0 =1+i   (z_1 −1−i)(−iz_1 −1−i−1+i)=r^2    (z_1 −1−i)(iz_1 +1+i+1−i)=−r^2   ⇒   (z_1 −1−i)(iz_1 +2)=−r^2   or   iz_1 ^2 +2z_1 −iz_1 −2+z_1 −2i+r^2 =0    iz_1 ^2 +(3−i)z_1 −(2−r^2 +2i)=0  as z_1  is a double root (line is  tangent to circle) we must have  D=0 , implies     (3−i)^2 +4i(2−r^2 +2i)=0  ⇒   8−6i+8i−4ir^2 −8=0  ⇒   4r^2  =2   or    r=(1/( (√2))) .  Hence equation of circle is       ∣z−1−i∣=(1/( (√2)))  or  (z−1−i)(z^� −1+i)=(1/2)  zz^� +(i−1)z−(1+i)z^� +2−(1/2)=0  zz^� +(i−1)z−(1+i)z^� +3/2=0 .
Centerofcircleliesonboththenormals:letcenterbez0.(1+i)z0(1i)z¯0=4i(1i)z0(1+i)z¯0=0adding:2z02z¯0=4iorz0z¯0=2i.(i)subtracting:2iz0+2iz¯0=4iorz0+z¯0=2.(ii)adding(i)and(ii):z0=1+iHenceequationofcirclecanbeassumedtobe:zz0∣=randletgiventangenttocircletouchesitatz1.Thenz1z0∣=rwhere(z0=1+i)or(z1z0)(z¯1z¯0)=r2(iii)fromequationoftangentiz1+z¯1+1+i=0z¯1=(iz1+1+i)substitutingin(iii)withz0=1+i(z11i)(iz11i1+i)=r2(z11i)(iz1+1+i+1i)=r2(z11i)(iz1+2)=r2oriz12+2z1iz12+z12i+r2=0iz12+(3i)z1(2r2+2i)=0asz1isadoubleroot(lineistangenttocircle)wemusthaveD=0,implies(3i)2+4i(2r2+2i)=086i+8i4ir28=04r2=2orr=12.Henceequationofcircleisz1i∣=12or(z1i)(z¯1+i)=12zz¯+(i1)z(1+i)z¯+212=0zz¯+(i1)z(1+i)z¯+3/2=0.
Commented by Tinkutara last updated on 30/Aug/17
Thank you very much Sir!
ThankyouverymuchSir!ThankyouverymuchSir!

Leave a Reply

Your email address will not be published. Required fields are marked *