Menu Close

Find-the-equation-of-line-through-the-point-of-intersection-of-the-line-x-3y-11-0-and-5x-4y-2-0-and-perpendicular-to-4x-2y-9-0-




Question Number 109160 by john santu last updated on 21/Aug/20
Find the equation of line through  the point of intersection of the  line x+3y−11=0 and 5x−4y+2=0  and perpendicular to 4x+2y+9=0.
Findtheequationoflinethroughthepointofintersectionofthelinex+3y11=0and5x4y+2=0andperpendicularto4x+2y+9=0.
Answered by bemath last updated on 21/Aug/20
Answered by Dwaipayan Shikari last updated on 21/Aug/20
4x+2y+9=0⇒y=−2x−(9/2)  slope(m)=−2  mm_0 =−1  m_0 =(1/2)  x+3y−11+Ψ(5x−4y+2)=0  (1+5Ψ)x+(3−4Ψ)y+2Ψ−11=0  y=((1+5Ψ)/(4Ψ−3))x+11−2Ψ  m_0 =((1+5Ψ)/(4Ψ−3))=(1/2)⇒Ψ=−(5/6)  (1−((25)/6))x+(3+((20)/6))y−(5/3)−11=0  x−2y+4=0  y=(x/2)+2
4x+2y+9=0y=2x92slope(m)=2mm0=1m0=12x+3y11+Ψ(5x4y+2)=0(1+5Ψ)x+(34Ψ)y+2Ψ11=0y=1+5Ψ4Ψ3x+112Ψm0=1+5Ψ4Ψ3=12Ψ=56(1256)x+(3+206)y5311=0x2y+4=0y=x2+2
Answered by Aziztisffola last updated on 21/Aug/20
x+3y−11=0⇒y=((11−x)/3)  5x−4y+2=0⇒y=((5x+2)/4)  ⇒((11−x)/3)=((5x+2)/4)⇒x=2 ⇒y=3  (x+3y−11=0)∩(5x−4y+2=0)=(2;3)  4x+2y+9=0 ⇒n^(→)  ((4),(2) ) vector normal  ⇒ax+by+c=0  ⇒2x−4y+c=0   2×2−4×3+c=0⇒c=8  ⇒ 2x−4y+8=0.  ⇒x−2y+4=0.
x+3y11=0y=11x35x4y+2=0y=5x+2411x3=5x+24x=2y=3(x+3y11=0)(5x4y+2=0)=(2;3)4x+2y+9=0n(42)vectornormalax+by+c=02x4y+c=02×24×3+c=0c=82x4y+8=0.x2y+4=0.
Answered by 1549442205PVT last updated on 22/Aug/20
Let the point of intersection of the  line x+3y−11=0 and 5x−4y+2=0  denoted by A.Then the coordintes  of A are root of the system   { ((5x−4y+2=0)),((x+3y−11=0)) :}⇔ { ((5x−4y+2=0 (1))),((5x+15y−55=0 (2))) :}  Subtracting (1) from (2) we get  19y−57=0⇒y=3,x=2⇒A(2;3)  The line d go through A and perpendicular  to the line 4x+2y+9=0 must have  the direction vector p^(→)  //n^(→) (4;2)  ⇒p^(→) =(2;1).Therefore ,the equation of  d is:((x−2)/2)=((y−3)/1)⇔x−2y+4=0  Thus,the line we need find has the  equation is (d):x−2y+4=0
Letthepointofintersectionofthelinex+3y11=0and5x4y+2=0denotedbyA.ThenthecoordintesofAarerootofthesystem{5x4y+2=0x+3y11=0{5x4y+2=0(1)5x+15y55=0(2)Subtracting(1)from(2)weget19y57=0y=3,x=2A(2;3)ThelinedgothroughAandperpendiculartotheline4x+2y+9=0musthavethedirectionvectorp//n(4;2)p=(2;1).Therefore,theequationofdis:x22=y31x2y+4=0Thus,thelineweneedfindhastheequationis(d):x2y+4=0
Commented by peter frank last updated on 22/Aug/20
thank you
thankyou

Leave a Reply

Your email address will not be published. Required fields are marked *