Menu Close

Find-the-equation-of-parabola-that-passes-through-points-1-2-3-4-and-tangents-to-the-line-y-x-25-3-




Question Number 116267 by bemath last updated on 02/Oct/20
Find the equation of parabola that  passes through points (1,2) ,(3,4)   and tangents to the line y=−x+((25)/3)
Findtheequationofparabolathatpassesthroughpoints(1,2),(3,4)andtangentstotheliney=x+253
Answered by bobhans last updated on 02/Oct/20
let the equation of parabola is   y=ax^2 +bx+c →passes throught points   { (((1,2)→2=a+b+c ...(i))),(((3,4)→4=9a+3b+c ...(ii))) :}  substract eq (i) by (ii)  ⇒2 = 8a+2b ; 1 = 4a+b ; b=1−4a  since parabola tangent to the line   y = −x+((25)/3), we get ax^2 +(1−4a)x+c=−x+((25)/3)  ax^2 +(2−4a)x+c−((25)/3)= 0. Taking  Δ = 4(1−2a)^2 −4a(c−((25)/3))=0  ⇒(1−2a)^2  = a(c−((25)/3))  ⇒ c = ((25)/3)+(((1−2a)^2 )/a); inserting to (i)  ⇒2 = a+1−4a+((25)/3)+(((1−2a)^2 )/a)  ⇒1 = ((25)/3)−3a+((1−4a+4a^2 )/a)  ⇒−22=−9a+((3−12a+12a^2 )/a)  ⇒−22a=−9a^2 +12a^2 −12a+3  ⇒3a^2 +10a+3 = 0  ⇒(3a+1)(a+3) = 0  for a=−(1/3)→ { ((b=1+(4/3)=(7/3))),((c=((25)/3)−3(1+(2/3))^2 = 0)) :}  we get the equation of parabola is  y= −(1/3)x^2 +(7/3)x  for a=−3→ { ((b=13)),((c=((25)/3)−((49)/3)=−8)) :}  we get the equation of parabola is  y = −3x^2 +13x−8
lettheequationofparabolaisy=ax2+bx+cpassesthroughtpoints{(1,2)2=a+b+c(i)(3,4)4=9a+3b+c(ii)substracteq(i)by(ii)2=8a+2b;1=4a+b;b=14asinceparabolatangenttotheliney=x+253,wegetax2+(14a)x+c=x+253ax2+(24a)x+c253=0.TakingΔ=4(12a)24a(c253)=0(12a)2=a(c253)c=253+(12a)2a;insertingto(i)2=a+14a+253+(12a)2a1=2533a+14a+4a2a22=9a+312a+12a2a22a=9a2+12a212a+33a2+10a+3=0(3a+1)(a+3)=0fora=13{b=1+43=73c=2533(1+23)2=0wegettheequationofparabolaisy=13x2+73xfora=3{b=13c=253493=8wegettheequationofparabolaisy=3x2+13x8
Commented by bemath last updated on 02/Oct/20
Commented by bemath last updated on 02/Oct/20
yes...correct
yescorrect
Commented by mr W last updated on 02/Oct/20
generally there are infinitely many  parabolas which fulfill the given  conditions.  there are two parabolas with axis  in y direction. that′s what you got.  there are two parabolas with axis  in x direction.  there are many other parabolas with  skew axis.
generallythereareinfinitelymanyparabolaswhichfulfillthegivenconditions.therearetwoparabolaswithaxisinydirection.thatswhatyougot.therearetwoparabolaswithaxisinxdirection.therearemanyotherparabolaswithskewaxis.
Commented by mr W last updated on 02/Oct/20
Commented by bemath last updated on 02/Oct/20
yes...santuyy...
yessantuyy
Answered by 1549442205PVT last updated on 03/Oct/20
Dente the equation of the parabol we  need find by (P): y=ax^2 +bx+c.Since  the P pass through A(1,2)and B(3,4)  we have:   { ((a+b+c=2(1))),((9a+3b+c=4(2))) :}  Substract (1)from(2)we get  8a+2b=2⇒b=1−4a,replace into (1)  we get a+1−4a+c=2⇒c=3a+1  ⇒(P):y=ax^2 +(1−4a)x+3a+1  Since P touches to y=−x+((25)/3), infer :  ax^2 +(1−4a)x+3a+1=−x+25/3   ⇔3ax^2 +2(3−6a)x+9a−22=0 has  unique root⇔Δ′=(3−6a)^2 −3a(9a−22)  =0⇔9a^2 +30a+9=0⇔(3a+5)^2 =16  ⇔3a+5=±4⇔a∈{−3,−1/3)  we obtain two parabol are:  i)y=−3x^2 +13x−8  ii)y=−(1/3)x^2 +(7/3)x
Dentetheequationoftheparabolweneedfindby(P):y=ax2+bx+c.SincethePpassthroughA(1,2)andB(3,4)wehave:{a+b+c=2(1)9a+3b+c=4(2)Substract(1)from(2)weget8a+2b=2b=14a,replaceinto(1)wegeta+14a+c=2c=3a+1(P):y=ax2+(14a)x+3a+1SincePtouchestoy=x+253,infer:ax2+(14a)x+3a+1=x+25/33ax2+2(36a)x+9a22=0hasuniquerootΔ=(36a)23a(9a22)=09a2+30a+9=0(3a+5)2=163a+5=±4a{3,1/3)weobtaintwoparabolare:i)y=3x2+13x8ii)y=13x2+73x
Commented by mr W last updated on 03/Oct/20
we can also let the parabola be  x=ay^2 +by+c    but generally the parabola is  (ax+by)^2 +cx+dy+e=0
wecanalsolettheparabolabex=ay2+by+cbutgenerallytheparabolais(ax+by)2+cx+dy+e=0
Commented by 1549442205PVT last updated on 07/Oct/20
Yes,then we obtain more two parabol   which symetry to two above paraboles   through line y=x
Yes,thenweobtainmoretwoparabolwhichsymetrytotwoaboveparabolesthroughliney=x

Leave a Reply

Your email address will not be published. Required fields are marked *