Menu Close

Find-the-equation-of-tangent-and-normal-to-the-curve-y-given-by-y-x-3-3x-2-7-




Question Number 42207 by Rio Michael last updated on 20/Aug/18
Find the equation of tangent and normal to  the curve y  given by   y = x^3  + 3x^2  + 7 .
Findtheequationoftangentandnormaltothecurveygivenbyy=x3+3x2+7.
Answered by MJS last updated on 20/Aug/18
f(x)=x^3 +3x^2 +7  tangent in  ((p),((f(p))) )  y=kx+d ⇒ d=y−kx  k=f′(p)=3p^2 +6p  d=f(p)−f′(p)p=−2p^3 −3p^2 +7    t: y=(3p^2 +6p)x−2p^3 −3p^2 +7    normal in  ((p),((f(p))) )  y=−(1/k)x+d ⇒ d=y+(1/k)x  k=same as above=f′(p)  d=f(p)+(1/(f′(p)))p=p^3 +3p^2 +7+(p/(3p^2 +6p))=  =p^3 +3p^2 +7+(1/(3p+6))=(((p^3 +3p^2 +7)(3p+6)+1)/(3p+6))=  =((3p^4 +15p^3 +18p^2 +21p+43)/(3p+6))    n: y=(1/(3(p+2)))(−x+3p^4 +15p^3 +18p^2 +21p+43)
f(x)=x3+3x2+7tangentin(pf(p))y=kx+dd=ykxk=f(p)=3p2+6pd=f(p)f(p)p=2p33p2+7t:y=(3p2+6p)x2p33p2+7normalin(pf(p))y=1kx+dd=y+1kxk=sameasabove=f(p)d=f(p)+1f(p)p=p3+3p2+7+p3p2+6p==p3+3p2+7+13p+6=(p3+3p2+7)(3p+6)+13p+6==3p4+15p3+18p2+21p+433p+6n:y=13(p+2)(x+3p4+15p3+18p2+21p+43)

Leave a Reply

Your email address will not be published. Required fields are marked *