Menu Close

Find-the-equation-of-tangent-to-the-ellipse-x-2-4y-2-4-which-are-perpendicular-to-the-line-2x-3y-1-merry-X-mas-and-happy-new-year-




Question Number 51151 by peter frank last updated on 24/Dec/18
Find the equation of  tangent to the  ellipse  x^2 +4y^2 =4 which are  perpendicular to the   line 2x−3y=1    ∗merry X−mas and happy new year∗
$${Find}\:{the}\:{equation}\:{of} \\ $$$${tangent}\:{to}\:{the}\:\:{ellipse} \\ $$$${x}^{\mathrm{2}} +\mathrm{4}{y}^{\mathrm{2}} =\mathrm{4}\:{which}\:{are} \\ $$$${perpendicular}\:{to}\:{the}\: \\ $$$${line}\:\mathrm{2}{x}−\mathrm{3}{y}=\mathrm{1} \\ $$$$ \\ $$$$\ast{merry}\:{X}−{mas}\:{and}\:{happy}\:{new}\:{year}\ast \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 24/Dec/18
3y=2x−1  y=(2/3)x−(1/3)  tangent  y=−(3/2)x+c  c=(√(a^2 m^2 +b^2 ))   (x^2 /2^2 )+(y^2 /1^2 )=1  c=(√(2^2 ×(((−3)^2 )/2^2 )+1^2 )) =(√(10))   tangent is  y=−((3x)/2)+(√(10))
$$\mathrm{3}{y}=\mathrm{2}{x}−\mathrm{1} \\ $$$${y}=\frac{\mathrm{2}}{\mathrm{3}}{x}−\frac{\mathrm{1}}{\mathrm{3}} \\ $$$${tangent}\:\:{y}=−\frac{\mathrm{3}}{\mathrm{2}}{x}+{c} \\ $$$${c}=\sqrt{{a}^{\mathrm{2}} {m}^{\mathrm{2}} +{b}^{\mathrm{2}} }\: \\ $$$$\frac{{x}^{\mathrm{2}} }{\mathrm{2}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{\mathrm{1}^{\mathrm{2}} }=\mathrm{1} \\ $$$${c}=\sqrt{\mathrm{2}^{\mathrm{2}} ×\frac{\left(−\mathrm{3}\right)^{\mathrm{2}} }{\mathrm{2}^{\mathrm{2}} }+\mathrm{1}^{\mathrm{2}} }\:=\sqrt{\mathrm{10}}\: \\ $$$${tangent}\:{is} \\ $$$${y}=−\frac{\mathrm{3}{x}}{\mathrm{2}}+\sqrt{\mathrm{10}}\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *