Menu Close

Find-the-equation-of-tangent-to-the-ellipse-x-2-4y-2-4-which-are-perpendicular-to-the-line-2x-3y-1-merry-X-mas-and-happy-new-year-




Question Number 51151 by peter frank last updated on 24/Dec/18
Find the equation of  tangent to the  ellipse  x^2 +4y^2 =4 which are  perpendicular to the   line 2x−3y=1    ∗merry X−mas and happy new year∗
Findtheequationoftangenttotheellipsex2+4y2=4whichareperpendiculartotheline2x3y=1merryXmasandhappynewyear
Answered by tanmay.chaudhury50@gmail.com last updated on 24/Dec/18
3y=2x−1  y=(2/3)x−(1/3)  tangent  y=−(3/2)x+c  c=(√(a^2 m^2 +b^2 ))   (x^2 /2^2 )+(y^2 /1^2 )=1  c=(√(2^2 ×(((−3)^2 )/2^2 )+1^2 )) =(√(10))   tangent is  y=−((3x)/2)+(√(10))
3y=2x1y=23x13tangenty=32x+cc=a2m2+b2x222+y212=1c=22×(3)222+12=10tangentisy=3x2+10

Leave a Reply

Your email address will not be published. Required fields are marked *