Menu Close

find-the-equation-of-the-2D-curve-such-that-the-lines-x-t-y-a-t-1-are-always-tangent-to-the-curve-given-a-is-a-positive-real-constant-and-t-is-a-parameter-0-lt-t-lt-a-




Question Number 34326 by 33 last updated on 04/May/18
find the equation of the 2D  curve such that the lines   (x/t) + (y/((a−t) )) = 1   are always tangent to  the curve.  given ′a′  is a positive real  constant and ′t′ is a  parameter. ( 0 < t < a )
findtheequationofthe2Dcurvesuchthatthelinesxt+y(at)=1arealwaystangenttothecurve.givenaisapositiverealconstantandtisaparameter.(0<t<a)
Answered by MJS last updated on 05/May/18
we take two of the tangents with  t_1 =p−h  t_2 =p+h  and search their intersection  y_1 =(a−p+h)(−(1/(p−h))x+1)  y_2 =(a−p−h)(−(1/(p+h))x+1)  y_1 =y_2  ⇒ y_1 −y_2 =0  (a−p+h)(−(1/(p−h))x+1)−(a−p−h)(−(1/(p+h))x+1)=0  2h(−(a/(p^2 −h^2 ))x+1)=0  x=((p^2 −h^2 )/a)  now remember:  first idea to find the tangent in  ((x),((f(x))) ) was  to draw the line between  (((x−h)),((f(x−h))) ) and   (((x+h)),((f(x+h))) ). this is a secant. with h→0 we  get the tangent.  same here, just from the opposite of it:  h → 0 ⇒ x=(p^2 /a); y=(((a−p)^2 )/a)  p=±(√(ax)) ⇒ y=x±2(√(ax))+a
wetaketwoofthetangentswitht1=pht2=p+handsearchtheirintersectiony1=(ap+h)(1phx+1)y2=(aph)(1p+hx+1)y1=y2y1y2=0(ap+h)(1phx+1)(aph)(1p+hx+1)=02h(ap2h2x+1)=0x=p2h2anowremember:firstideatofindthetangentin(xf(x))wastodrawthelinebetween(xhf(xh))and(x+hf(x+h)).thisisasecant.withh0wegetthetangent.samehere,justfromtheoppositeofit:h0x=p2a;y=(ap)2ap=±axy=x±2ax+a

Leave a Reply

Your email address will not be published. Required fields are marked *