Menu Close

find-the-equation-of-the-circle-containing-the-point-2-2-and-passing-throught-the-points-of-intersection-of-the-two-circle-x-2-y-2-3x-2y-4-0-and-x-2-y-2-2x-y-6-0-




Question Number 95639 by i jagooll last updated on 26/May/20
find the equation of the circle   containing the point (−2,2) and  passing throught the points of   intersection of the two circle   x^2 +y^2 +3x−2y−4=0 and   x^2 +y^2 −2x−y−6=0
$$\mathrm{find}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{the}\:\mathrm{circle}\: \\ $$$$\mathrm{containing}\:\mathrm{the}\:\mathrm{point}\:\left(−\mathrm{2},\mathrm{2}\right)\:\mathrm{and} \\ $$$$\mathrm{passing}\:\mathrm{throught}\:\mathrm{the}\:\mathrm{points}\:\mathrm{of}\: \\ $$$$\mathrm{intersection}\:\mathrm{of}\:\mathrm{the}\:\mathrm{two}\:\mathrm{circle}\: \\ $$$$\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} +\mathrm{3x}−\mathrm{2y}−\mathrm{4}=\mathrm{0}\:\mathrm{and}\: \\ $$$$\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} −\mathrm{2x}−\mathrm{y}−\mathrm{6}=\mathrm{0} \\ $$
Commented by i jagooll last updated on 26/May/20
thank you
$$\mathrm{thank}\:\mathrm{you} \\ $$
Answered by john santu last updated on 26/May/20
substitute (−2,2) for (x,y) in the  equation (x^2 +y^2 +3x−2y−4)+λ(x^2 +y^2 −2x−y−6)=0  then λ = (3/2). so desired equation can be  written as 5x^2 +5y^2 −7y−26 = 0
$$\mathrm{substitute}\:\left(−\mathrm{2},\mathrm{2}\right)\:\mathrm{for}\:\left(\mathrm{x},\mathrm{y}\right)\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{equation}\:\left(\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} +\mathrm{3x}−\mathrm{2y}−\mathrm{4}\right)+\lambda\left(\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} −\mathrm{2x}−\mathrm{y}−\mathrm{6}\right)=\mathrm{0} \\ $$$$\mathrm{then}\:\lambda\:=\:\frac{\mathrm{3}}{\mathrm{2}}.\:\mathrm{so}\:\mathrm{desired}\:\mathrm{equation}\:\mathrm{can}\:\mathrm{be} \\ $$$$\mathrm{written}\:\mathrm{as}\:\mathrm{5x}^{\mathrm{2}} +\mathrm{5y}^{\mathrm{2}} −\mathrm{7y}−\mathrm{26}\:=\:\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *