Menu Close

Find-the-equation-of-the-ellipse-with-ecentricity-1-2-and-the-focus-2-1-Does-the-line-x-3-touches-ellipse-if-so-at-what-point-if-line-x-5-is-the-line-of-direction-




Question Number 51612 by peter frank last updated on 29/Dec/18
Find the equation of  the ellipse with ecentricity  (1/2) and the focus (2,1)  Does the line x=3 touches  ellipse.if so at what   point?if line x=5 is the  line of direction.
$${Find}\:{the}\:{equation}\:{of} \\ $$$${the}\:{ellipse}\:{with}\:{ecentricity} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\:{and}\:{the}\:{focus}\:\left(\mathrm{2},\mathrm{1}\right) \\ $$$${Does}\:{the}\:{line}\:{x}=\mathrm{3}\:{touches} \\ $$$${ellipse}.{if}\:{so}\:{at}\:{what}\: \\ $$$${point}?{if}\:{line}\:{x}=\mathrm{5}\:{is}\:{the} \\ $$$${line}\:{of}\:{direction}. \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 29/Dec/18
Answered by peter frank last updated on 29/Dec/18
((PS)/(PM))=e  e=(1/2)  P=(x,y)  S=(2,1)  M=(5,y)⇒directrix  PS=(√((x−2)^2 +(y−1)^2 ))  PM=(√((x−5)^2 +(y−y)))  ((PS)/(PM))=(1/2)  3x^2 +4y^2 −6x−8y−5=0  x=3  y^2 −2y+1=0  from  b^2 =4ac  (−2)^2 =4  hence   x=3 touches the  ellipse
$$\frac{{PS}}{{PM}}={e} \\ $$$${e}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${P}=\left({x},{y}\right) \\ $$$${S}=\left(\mathrm{2},\mathrm{1}\right) \\ $$$${M}=\left(\mathrm{5},{y}\right)\Rightarrow{directrix} \\ $$$${PS}=\sqrt{\left({x}−\mathrm{2}\right)^{\mathrm{2}} +\left({y}−\mathrm{1}\right)^{\mathrm{2}} } \\ $$$${PM}=\sqrt{\left({x}−\mathrm{5}\right)^{\mathrm{2}} +\left({y}−{y}\right)} \\ $$$$\frac{{PS}}{{PM}}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\mathrm{3}{x}^{\mathrm{2}} +\mathrm{4}{y}^{\mathrm{2}} −\mathrm{6}{x}−\mathrm{8}{y}−\mathrm{5}=\mathrm{0} \\ $$$${x}=\mathrm{3} \\ $$$${y}^{\mathrm{2}} −\mathrm{2}{y}+\mathrm{1}=\mathrm{0} \\ $$$${from} \\ $$$${b}^{\mathrm{2}} =\mathrm{4}{ac} \\ $$$$\left(−\mathrm{2}\right)^{\mathrm{2}} =\mathrm{4} \\ $$$${hence}\:\:\:{x}=\mathrm{3}\:{touches}\:{the} \\ $$$${ellipse} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *