Menu Close

Find-the-equation-of-the-line-tangent-to-the-parametric-curve-given-by-the-equations-x-1-t-3-4-t-2-y-t-5-t-2-2-at-t-1-




Question Number 120452 by john santu last updated on 31/Oct/20
Find the equation of the line tangent to the parametric  curve given by the equations  { ((x=(1+t^3 )^4 +t^2 )),((y=t^5 +t^2 +2)) :} at t=1
Findtheequationofthelinetangenttotheparametriccurvegivenbytheequations{x=(1+t3)4+t2y=t5+t2+2att=1
Answered by physicstutes last updated on 31/Oct/20
 x = (1 + t^3 )^4  + t^2  , when t = 1, x = 17  ⇒ (dx/dt) = 12t^2 (1+t^3 )^3 + 2t   also y = t^5  + t^2  + 2 when t = 1, y = 4  ⇒ (dy/dt) = 5t^4  + 2t       (dy/dx) = (dy/dt)×(dt/dx) = ((5t^4 +2t)/(12t^2 (1+t^3 )^3 +2t))  ((dy/dx))_(t=1)  = (5/(98))    y − 4 = (5/(99))(x−17)  98(y−4) = 5(x−17) [mistakes corrected]
x=(1+t3)4+t2,whent=1,x=17dxdt=12t2(1+t3)3+2talsoy=t5+t2+2whent=1,y=4dydt=5t4+2tdydx=dydt×dtdx=5t4+2t12t2(1+t3)3+2t(dydx)t=1=598y4=599(x17)98(y4)=5(x17)[mistakescorrected]
Commented by bramlexs22 last updated on 31/Oct/20
typo it should be (7/(98))
typoitshouldbe798
Commented by peter frank last updated on 31/Oct/20
help please 90208,90030
helpplease90208,90030
Answered by bramlexs22 last updated on 31/Oct/20
gradient (m)=(dy/dx) = (dy/dt)×(dt/dx)   = ((5t^4 +2t)/(12t^2 (1+t^3 )^3 +2)) = (7/(98))  for t = 1 → { ((x=17)),((y=4)) :}  eq of line tangent 7x−98y=7(17)−98(4)  7x−98y=119−392  ⇔7x−98y+273=0
gradient(m)=dydx=dydt×dtdx=5t4+2t12t2(1+t3)3+2=798fort=1{x=17y=4eqoflinetangent7x98y=7(17)98(4)7x98y=1193927x98y+273=0

Leave a Reply

Your email address will not be published. Required fields are marked *