Menu Close

Find-the-equation-of-the-line-tangent-to-the-parametric-curve-given-by-the-equations-x-1-t-3-4-t-2-y-t-5-t-2-2-at-t-1-




Question Number 120452 by john santu last updated on 31/Oct/20
Find the equation of the line tangent to the parametric  curve given by the equations  { ((x=(1+t^3 )^4 +t^2 )),((y=t^5 +t^2 +2)) :} at t=1
$${Find}\:{the}\:{equation}\:{of}\:{the}\:{line}\:{tangent}\:{to}\:{the}\:{parametric} \\ $$$${curve}\:{given}\:{by}\:{the}\:{equations}\:\begin{cases}{{x}=\left(\mathrm{1}+{t}^{\mathrm{3}} \right)^{\mathrm{4}} +{t}^{\mathrm{2}} }\\{{y}={t}^{\mathrm{5}} +{t}^{\mathrm{2}} +\mathrm{2}}\end{cases}\:{at}\:{t}=\mathrm{1} \\ $$
Answered by physicstutes last updated on 31/Oct/20
 x = (1 + t^3 )^4  + t^2  , when t = 1, x = 17  ⇒ (dx/dt) = 12t^2 (1+t^3 )^3 + 2t   also y = t^5  + t^2  + 2 when t = 1, y = 4  ⇒ (dy/dt) = 5t^4  + 2t       (dy/dx) = (dy/dt)×(dt/dx) = ((5t^4 +2t)/(12t^2 (1+t^3 )^3 +2t))  ((dy/dx))_(t=1)  = (5/(98))    y − 4 = (5/(99))(x−17)  98(y−4) = 5(x−17) [mistakes corrected]
$$\:{x}\:=\:\left(\mathrm{1}\:+\:{t}^{\mathrm{3}} \right)^{\mathrm{4}} \:+\:{t}^{\mathrm{2}} \:,\:\mathrm{when}\:{t}\:=\:\mathrm{1},\:{x}\:=\:\mathrm{17} \\ $$$$\Rightarrow\:\frac{{dx}}{{dt}}\:=\:\mathrm{12}{t}^{\mathrm{2}} \left(\mathrm{1}+{t}^{\mathrm{3}} \right)^{\mathrm{3}} +\:\mathrm{2}{t}\: \\ $$$$\mathrm{also}\:{y}\:=\:{t}^{\mathrm{5}} \:+\:{t}^{\mathrm{2}} \:+\:\mathrm{2}\:\mathrm{when}\:{t}\:=\:\mathrm{1},\:{y}\:=\:\mathrm{4} \\ $$$$\Rightarrow\:\frac{{dy}}{{dt}}\:=\:\mathrm{5}{t}^{\mathrm{4}} \:+\:\mathrm{2}{t}\:\: \\ $$$$\:\:\:\frac{{dy}}{{dx}}\:=\:\frac{{dy}}{{dt}}×\frac{{dt}}{{dx}}\:=\:\frac{\mathrm{5}{t}^{\mathrm{4}} +\mathrm{2}{t}}{\mathrm{12}{t}^{\mathrm{2}} \left(\mathrm{1}+{t}^{\mathrm{3}} \right)^{\mathrm{3}} +\mathrm{2}{t}} \\ $$$$\left(\frac{{dy}}{{dx}}\right)_{{t}=\mathrm{1}} \:=\:\frac{\mathrm{5}}{\mathrm{98}} \\ $$$$\:\:{y}\:−\:\mathrm{4}\:=\:\frac{\mathrm{5}}{\mathrm{99}}\left({x}−\mathrm{17}\right) \\ $$$$\mathrm{98}\left({y}−\mathrm{4}\right)\:=\:\mathrm{5}\left({x}−\mathrm{17}\right)\:\left[\mathrm{mistakes}\:\mathrm{corrected}\right] \\ $$
Commented by bramlexs22 last updated on 31/Oct/20
typo it should be (7/(98))
$${typo}\:{it}\:{should}\:{be}\:\frac{\mathrm{7}}{\mathrm{98}} \\ $$
Commented by peter frank last updated on 31/Oct/20
help please 90208,90030
$$\mathrm{help}\:\mathrm{please}\:\mathrm{90208},\mathrm{90030} \\ $$
Answered by bramlexs22 last updated on 31/Oct/20
gradient (m)=(dy/dx) = (dy/dt)×(dt/dx)   = ((5t^4 +2t)/(12t^2 (1+t^3 )^3 +2)) = (7/(98))  for t = 1 → { ((x=17)),((y=4)) :}  eq of line tangent 7x−98y=7(17)−98(4)  7x−98y=119−392  ⇔7x−98y+273=0
$${gradient}\:\left({m}\right)=\frac{{dy}}{{dx}}\:=\:\frac{{dy}}{{dt}}×\frac{{dt}}{{dx}} \\ $$$$\:=\:\frac{\mathrm{5}{t}^{\mathrm{4}} +\mathrm{2}{t}}{\mathrm{12}{t}^{\mathrm{2}} \left(\mathrm{1}+{t}^{\mathrm{3}} \right)^{\mathrm{3}} +\mathrm{2}}\:=\:\frac{\mathrm{7}}{\mathrm{98}} \\ $$$${for}\:{t}\:=\:\mathrm{1}\:\rightarrow\begin{cases}{{x}=\mathrm{17}}\\{{y}=\mathrm{4}}\end{cases} \\ $$$${eq}\:{of}\:{line}\:{tangent}\:\mathrm{7}{x}−\mathrm{98}{y}=\mathrm{7}\left(\mathrm{17}\right)−\mathrm{98}\left(\mathrm{4}\right) \\ $$$$\mathrm{7}{x}−\mathrm{98}{y}=\mathrm{119}−\mathrm{392} \\ $$$$\Leftrightarrow\mathrm{7}{x}−\mathrm{98}{y}+\mathrm{273}=\mathrm{0} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *