Menu Close

Find-the-equation-of-the-line-that-is-tangent-to-the-curve-y-x-3-and-is-parallel-to-the-line-3x-y-1-0-




Question Number 31812 by NECx last updated on 15/Mar/18
Find the equation of the line  that is tangent to the curve y=x^3   and is parallel to the line  3x−y+1=0
$${Find}\:{the}\:{equation}\:{of}\:{the}\:{line} \\ $$$${that}\:{is}\:{tangent}\:{to}\:{the}\:{curve}\:{y}={x}^{\mathrm{3}} \\ $$$${and}\:{is}\:{parallel}\:{to}\:{the}\:{line} \\ $$$$\mathrm{3}{x}−{y}+\mathrm{1}=\mathrm{0} \\ $$
Answered by mrW2 last updated on 15/Mar/18
let y=3x+c be the line tangent to y=x^3   (dy/dx)=3x^2 =3  ⇒x=±1  y=3x+c=±3+c=±1  ⇒c=−2 or 2  ⇒eqn. of line is  y=3x−2 or  y=3x+2
$${let}\:{y}=\mathrm{3}{x}+{c}\:{be}\:{the}\:{line}\:{tangent}\:{to}\:{y}={x}^{\mathrm{3}} \\ $$$$\frac{{dy}}{{dx}}=\mathrm{3}{x}^{\mathrm{2}} =\mathrm{3} \\ $$$$\Rightarrow{x}=\pm\mathrm{1} \\ $$$${y}=\mathrm{3}{x}+{c}=\pm\mathrm{3}+{c}=\pm\mathrm{1} \\ $$$$\Rightarrow{c}=−\mathrm{2}\:{or}\:\mathrm{2} \\ $$$$\Rightarrow{eqn}.\:{of}\:{line}\:{is} \\ $$$${y}=\mathrm{3}{x}−\mathrm{2}\:{or} \\ $$$${y}=\mathrm{3}{x}+\mathrm{2} \\ $$
Answered by ajfour last updated on 15/Mar/18
let eq. of tangent to y=x^3   at (x_1 ,x_1 ^3 ) be  y−x_1 ^3 =3x_1 ^2 (x−x_1 )  as   (dy/dx)∣_(x=x_1 ) = 3   (slope of given // line)  ⇒  3x_1 ^2 =3   ⇒   x_1 = ±1  so reqd. tangent eqs. are     y−1=3(x−1)   or   y=3x−2  and  y+1=3(x+1)  or   y=3x+2  .
$${let}\:{eq}.\:{of}\:{tangent}\:{to}\:{y}={x}^{\mathrm{3}} \:\:{at}\:\left({x}_{\mathrm{1}} ,{x}_{\mathrm{1}} ^{\mathrm{3}} \right)\:{be} \\ $$$${y}−{x}_{\mathrm{1}} ^{\mathrm{3}} =\mathrm{3}{x}_{\mathrm{1}} ^{\mathrm{2}} \left({x}−{x}_{\mathrm{1}} \right) \\ $$$${as}\:\:\:\frac{{dy}}{{dx}}\mid_{{x}={x}_{\mathrm{1}} } =\:\mathrm{3}\:\:\:\left({slope}\:{of}\:{given}\://\:{line}\right) \\ $$$$\Rightarrow\:\:\mathrm{3}{x}_{\mathrm{1}} ^{\mathrm{2}} =\mathrm{3}\:\:\:\Rightarrow\:\:\:{x}_{\mathrm{1}} =\:\pm\mathrm{1} \\ $$$${so}\:{reqd}.\:{tangent}\:{eqs}.\:{are} \\ $$$$\:\:\:{y}−\mathrm{1}=\mathrm{3}\left({x}−\mathrm{1}\right)\:\:\:{or}\:\:\:{y}=\mathrm{3}{x}−\mathrm{2} \\ $$$${and}\:\:{y}+\mathrm{1}=\mathrm{3}\left({x}+\mathrm{1}\right)\:\:{or}\:\:\:{y}=\mathrm{3}{x}+\mathrm{2}\:\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *