Menu Close

Find-the-equation-of-the-line-which-passes-through-the-point-3-5-and-is-tangent-to-the-circle-x-1-2-y-1-2-4-




Question Number 183044 by depressiveshrek last updated on 19/Dec/22
Find the equation of the line which  passes through the point (3, 5)  and is tangent to the circle  (x−1)^2 +(y−1)^2 =4
Findtheequationofthelinewhichpassesthroughthepoint(3,5)andistangenttothecircle(x1)2+(y1)2=4
Answered by mr W last updated on 19/Dec/22
say line through (3,5) is:   x−3=k(y−5)  ⇒x−ky+5k−3=0  ((∣1−k+5k−3∣)/( (√(1+k^2 ))))=2  ((∣2k−1∣)/( (√(1+k^2 ))))=1  (3k−4)k=0  ⇒k=0 or k=(4/3)  line 1: x−3=0 ⇒x=3  line 2: x−3=(4/3)(y−5) ⇒y=((3x)/4)+((11)/4)
saylinethrough(3,5)is:x3=k(y5)xky+5k3=01k+5k31+k2=22k11+k2=1(3k4)k=0k=0ork=43line1:x3=0x=3line2:x3=43(y5)y=3x4+114
Commented by mr W last updated on 19/Dec/22
Answered by MathAcer26 last updated on 19/Dec/22
The center is at (1,1) with radius = 2  (3,1) is a point in the circle.  Thus, x = 3 is a tangent to the circle passing  through (3,5)
Thecenterisat(1,1)withradius=2(3,1)isapointinthecircle.Thus,x=3isatangenttothecirclepassingthrough(3,5)
Answered by ajfour last updated on 20/Dec/22
let Origin (1,1)  circle  x^2 +y^2 =4  tangent hx+ky=4  passes through (2,4)  2h+4k=4 ⇒  h=2−2k  h^2 +k^2 =4  ⇒ 4(1−k)^2 +k^2 =4  5k^2 −8k=0   ⇒  k=(8/5)  , h=−(6/5)  eq.of tangent in O(0,0)  h(x−1)+k(y−1)=4  −6x+8y=22  4y=3x+11  is the tangent equation with  O(0,0).
letOrigin(1,1)circlex2+y2=4tangenthx+ky=4passesthrough(2,4)2h+4k=4h=22kh2+k2=44(1k)2+k2=45k28k=0k=85,h=65eq.oftangentinO(0,0)h(x1)+k(y1)=46x+8y=224y=3x+11isthetangentequationwithO(0,0).
Answered by cortano1 last updated on 20/Dec/22
 let the line is (a−1)(x−1)+(b−1)(y−1)= 4  and passes throught the point (3,5)  ⇒2(a−1)+4(b−1)= 4  ⇒a−1+2b−2=2 ; a=5−2b  (ii) (a−1)^2 +(b−1)^2 =4  ⇒(4−2b)^2 +(b−1)^2 =4  ⇒ { ((b=1⇒a=3)),((b=((13)/5)⇒a=5−((26)/5)=−(1/5))) :}  so the equation of line is  ⇒ { ((2(x−1)=4⇒x=3)),((−(6/5)(x−1)+(8/5)(y−1)=4)) :}  ⇒ { ((x=3)),((−6x+6+8y−8=20)) :}  ⇒ { ((x=3)),((3x−4y+11=0)) :}
letthelineis(a1)(x1)+(b1)(y1)=4andpassesthroughtthepoint(3,5)2(a1)+4(b1)=4a1+2b2=2;a=52b(ii)(a1)2+(b1)2=4(42b)2+(b1)2=4{b=1a=3b=135a=5265=15sotheequationoflineis{2(x1)=4x=365(x1)+85(y1)=4{x=36x+6+8y8=20{x=33x4y+11=0

Leave a Reply

Your email address will not be published. Required fields are marked *