Menu Close

Find-the-equation-of-the-locus-of-points-equidistant-from-the-point-A-4-1-and-the-line-x-y-2-0-




Question Number 175176 by nadovic last updated on 21/Aug/22
Find the equation of the locus of   points equidistant from the point  A(4, −1) and the line x−y+2=0.
FindtheequationofthelocusofpointsequidistantfromthepointA(4,1)andthelinexy+2=0.
Answered by som(math1967) last updated on 22/Aug/22
let movale point(h,k)  from the condition  (√((h−4)^2 +(k+1)^2 ))=((∣h−k+2∣)/( (√((1)^2 +(−1)^2 ))))  2(h−4)^2 +2(k+1)^2 =h^2 +k^2 +4−2hk                                                +4h−4k    [squaring both side]  h^2 +k^2 +12h−8k−2hk−30=0  ∴ equation of the locus  x^2 +y^2 +12x−8y−2xy−30=0  locus path is parabola
letmovalepoint(h,k)fromthecondition(h4)2+(k+1)2=hk+2(1)2+(1)22(h4)2+2(k+1)2=h2+k2+42hk+4h4k[squaringbothside]h2+k2+12h8k2hk30=0equationofthelocusx2+y2+12x8y2xy30=0locuspathisparabola
Commented by nadovic last updated on 22/Aug/22
Thank you Sir
ThankyouSir
Answered by a.lgnaoui last updated on 22/Aug/22
  l ensemble des points situes a la meme distance de A a la droite (D)  y=x+2 au pont M(4,−1) sont les points de la droite parallele a (D)note (D′) qui s  qui passe par M    y=x+m  x=4      y=−1  4+m=−1     m=−5  y=x−5
lensembledespointssituesalamemedistancedeAaladroite(D)y=x+2aupontM(4,1)sontlespointsdeladroiteparallelea(D)note(D)quisquipasseparMy=x+mx=4y=14+m=1m=5y=x5
Commented by som(math1967) last updated on 22/Aug/22
(4,−1) not equidistace to y=x+2  and y=x−5
(4,1)notequidistacetoy=x+2andy=x5

Leave a Reply

Your email address will not be published. Required fields are marked *