Menu Close

Find-the-equation-of-the-tangent-T-0-to-y-x-3-x-2-x-at-x-0-2-Find-x-1-such-that-the-tangent-T-1-at-x-1-be-parallel-to-T-0-




Question Number 95636 by Ar Brandon last updated on 26/May/20
Find the equation of the tangent(T_0 ) to y=x^3 −x^2 −x  at x_0 =2. Find x_1  such that the tangent T_1  at x_1   be parallel to T_0 .
Findtheequationofthetangent(T0)toy=x3x2xatx0=2.Findx1suchthatthetangentT1atx1beparalleltoT0.
Answered by john santu last updated on 26/May/20
solution : y_0 =8−4−2 = 2  gradient of tangent line f ′(2)  f ′(x)=3x^2 −2x−1⇒f ′(2)=12−5=7  the eq of tangent line at x=2  can be written as 7x−y=7.(2)−1(2)  7x−y=12
solution:y0=842=2gradientoftangentlinef(2)f(x)=3x22x1f(2)=125=7theeqoftangentlineatx=2canbewrittenas7xy=7.(2)1(2)7xy=12
Answered by john santu last updated on 26/May/20
slope at x_1  = f ′(x_1 ) = 7 [ since parallel to x_0 ]  3x_1 ^2 −2x_1 −8=0  (3x_1  +4 )(x_1 −2) = 0   x_1 = 2 = x_0  ( not satisfy to condition)  so x_1 =−(4/3)
slopeatx1=f(x1)=7[sinceparalleltox0]3x122x18=0(3x1+4)(x12)=0x1=2=x0(notsatisfytocondition)sox1=43

Leave a Reply

Your email address will not be published. Required fields are marked *