Menu Close

find-the-equation-of-the-tangent-to-the-curve-x-y-a-at-any-point-x-y-on-it-




Question Number 25634 by rita1608 last updated on 12/Dec/17
find the equation of the tangent to   the curve (√x)+(√y)=(√a) at any point  (x,y)on it.
findtheequationofthetangenttothecurvex+y=aatanypoint(x,y)onit.
Answered by mrW1 last updated on 13/Dec/17
(dx/(2(√x)))+(dy/(2(√y)))=0  ⇒(dy/dx)=−(√(y/x))    eqn. of tangent at (x_1 ,y_1 ):  ((y−y_1 )/(x−x_1 ))=−(√(y_1 /x_1 ))  ⇒y−y_1 +(x−x_1 )(√(y_1 /x_1 ))=0  with (√x_1 )+(√y_1 )=(√a)  or  y_1 =x_1 +a−2(√(ax_1 ))
dx2x+dy2y=0dydx=yxeqn.oftangentat(x1,y1):yy1xx1=y1x1yy1+(xx1)y1x1=0withx1+y1=aory1=x1+a2ax1
Commented by mrW1 last updated on 13/Dec/17
you are right sir. thanks!
youarerightsir.thanks!
Commented by rita1608 last updated on 13/Dec/17
(dy/dx) is −((√y)/( (√x)))  plss check ans once again
dydxisyxplsscheckansonceagain

Leave a Reply

Your email address will not be published. Required fields are marked *