Menu Close

Find-the-equation-to-two-circles-which-touch-the-x-axis-at-the-origin-and-also-touch-the-line-12x-5y-60-




Question Number 54270 by peter frank last updated on 01/Feb/19
Find the equation to two  circles which touch the   x−axis at the origin  and also touch the line  12x+5y=60
Findtheequationtotwocircleswhichtouchthexaxisattheoriginandalsotouchtheline12x+5y=60
Answered by ajfour last updated on 01/Feb/19
x^2 +(y−k)^2 =k^2   c=k±k (√(1+m^2 )) ⇒ 12=k±k(√(1+(((12)/5))^2 ))   ⇒  k = ((12)/(1±((13)/5))) = ((10)/3), −((15)/2)  hence eq. of circle above x-axis is  3x^2 +3y^2 −20y=0  while that below x-axis is  x^2 +y^2 +15y=0 .
x2+(yk)2=k2c=k±k1+m212=k±k1+(125)2k=121±135=103,152henceeq.ofcircleabovexaxisis3x2+3y220y=0whilethatbelowxaxisisx2+y2+15y=0.
Answered by tanmay.chaudhury50@gmail.com last updated on 01/Feb/19
x^2 +(y−a)^2 =a^2  centre(0,a)  ∣((12×0+5a−60)/( (√(12^2 +5^2 ))))∣=a  5a−60=13a  a=((−60)/8)=((−15)/2)  x^2 +(y+7.5)^2 =(7.5)^2   edited for second equatiin centre(0,−a)  x^2 +(y+a)^2 =a^2   ∣((12×0+5(−a)−60)/( (√(12^2 +5^2 ))))∣=a  −5a−60=13a  18a=−60  a=((−10)/3)  x^2 +(y−((10)/3))^2 =((100)/9)  x^2 +y^2 −((20y)/3)=0  3x^2 +3y^2 −20y=0
x2+(ya)2=a2centre(0,a)12×0+5a60122+52∣=a5a60=13aa=608=152x2+(y+7.5)2=(7.5)2editedforsecondequatiincentre(0,a)x2+(y+a)2=a212×0+5(a)60122+52∣=a5a60=13a18a=60a=103x2+(y103)2=1009x2+y220y3=03x2+3y220y=0

Leave a Reply

Your email address will not be published. Required fields are marked *