Menu Close

Find-the-equations-of-the-circles-passing-through-4-3-and-touching-the-lines-x-y-2-and-x-y-2-




Question Number 144201 by bramlexs22 last updated on 23/Jun/21
Find the equations of the circles  passing through (−4,3) and touching  the lines x+y=2 and x−y=2
Findtheequationsofthecirclespassingthrough(4,3)andtouchingthelinesx+y=2andxy=2
Answered by benjo_mathlover last updated on 23/Jun/21
let the equation of circle be      x^2 +y^2 +2gx+2fy+c =0...(i)  it passes through (−4,3) therefore   25−8g+6f+c =0...(ii)  since circle touches the lines     { ((x+y−2=0)),((x−y−2=0)) :} ⇒ then    ∣((−g−f−2)/( (√2)))∣=∣((−g+f−2)/( (√2)))∣=(√(g^2 +f^2 −c)) ...(iii)  Now ∣((−g−f−2)/( (√2)))∣=∣((−g+f−2)/( (√2)))∣  we get f=0 or g=−2  case(1) for f=0  ⇒∣((−g−2)/( (√2)))∣=(√(g^2 −c))  ⇒(g+2)^2 =2(g^2 −c)  ⇒g^2 −4g−2c−4=0...(iv)  putting f=0 in (ii) gives 25−8g+c=0...(v)   eliminaring c between (iv)&(v)  g^2 −20g+46=0 ; g=10±3(√6)  substituting the value of g in (v)  we find c=55±24(√6)   so the eq of circle is   x^2 +y^2 ±2(10±3(√6))x+(55±24(√6))=0
lettheequationofcirclebex2+y2+2gx+2fy+c=0(i)itpassesthrough(4,3)therefore258g+6f+c=0(ii)sincecircletouchesthelines{x+y2=0xy2=0thengf22∣=∣g+f22∣=g2+f2c(iii)Nowgf22∣=∣g+f22wegetf=0org=2case(1)forf=0⇒∣g22∣=g2c(g+2)2=2(g2c)g24g2c4=0(iv)puttingf=0in(ii)gives258g+c=0(v)eliminaringcbetween(iv)&(v)g220g+46=0;g=10±36substitutingthevalueofgin(v)wefindc=55±246sotheeqofcircleisx2+y2±2(10±36)x+(55±246)=0

Leave a Reply

Your email address will not be published. Required fields are marked *