Menu Close

find-the-equations-of-two-circles-which-thier-center-both-2-2-and-tangent-with-circle-x-2-y-2-8x-10y-5-0-




Question Number 123393 by malwan last updated on 25/Nov/20
find the equations of [two] circles  which thier center both (2,−2)  and tangent with circle  x^2  + y^2  −8x + 10y + 5 = 0
findtheequationsof[two]circleswhichthiercenterboth(2,2)andtangentwithcirclex2+y28x+10y+5=0
Commented by malwan last updated on 25/Nov/20
can you drow it sir ?
canyoudrowitsir?
Commented by MJS_new last updated on 25/Nov/20
sorry I have no drawing app
sorryIhavenodrawingapp
Commented by talminator2856791 last updated on 25/Nov/20
 you can use this app drawing tool
youcanusethisappdrawingtool
Commented by malwan last updated on 25/Nov/20
can you try sir ?
canyoutrysir?
Commented by MJS_new last updated on 25/Nov/20
sorry I never used it and I don′t have the time  to get used to it. but it′s easy to sketch
sorryIneveruseditandIdonthavethetimetogetusedtoit.butitseasytosketch
Commented by talminator2856791 last updated on 25/Nov/20
 yes i tried but it is difficult to use this
yesitriedbutitisdifficulttousethis
Answered by talminator2856791 last updated on 25/Nov/20
    x^2 +y^2 −8x+10y+5 = (x−4)^2 +(y+5)^2 +5−16−25   (x−4)^2 +(y+5)^2  = r^2  = 36   r = 6   r(4; −5)   distance between centres d   d = (√(2^2 +3^2 ))   d = (√(13))   (√(13)) ≪ r      equations of circles:   (x−2)^2 +(y+2)^2  = (6−(√(13)))^2    (x−2)^2 +(y+2)^2  = (6+(√(13)))^2
x2+y28x+10y+5=(x4)2+(y+5)2+51625(x4)2+(y+5)2=r2=36r=6r(4;5)distancebetweencentresdd=22+32d=1313requationsofcircles:(x2)2+(y+2)2=(613)2(x2)2+(y+2)2=(6+13)2
Commented by malwan last updated on 25/Nov/20
thank you sir
thankyousir
Answered by MJS_new last updated on 25/Nov/20
(1) (x−2)^2 +(y+2)^2 −r^2 =0  (2) x^2 +y^2 −8x+10y+5=0  (1) x^2 +y^2 −4x+4y+8−r^2 =0  (1)−(2) 4x−6y+3−r^2 =0 ⇒ y=((4x−r^2 +3)/6)  insert in (1) or (2)  ((13)/9)x^2 −((2(r^2 +3))/9)+((r^4 −66r^2 +369)/(36))=0  x^2 −((2(o^2 +3))/(13))x+((r^4 −66r^2 +369)/(52))=0  tangenting circles means we must find r in  order to get a? double solution for x  x^2 +px+q=0 ⇒ x=−(p/2)±(√((p^2 /4)−q))  we need (p^2 /4)−q=0  ⇒ (9/(676))(r^4 −98r^2 +529)=0  ⇒ r=6±(√(13)) [r>0]  ⇒  circle 1: (x−2)^2 +(y+2)^2 +49−12(√(13))=0  circle 2: (x−2)^2 +(y+2)^2 +49+12(√(13))=0
(1)(x2)2+(y+2)2r2=0(2)x2+y28x+10y+5=0(1)x2+y24x+4y+8r2=0(1)(2)4x6y+3r2=0y=4xr2+36insertin(1)or(2)139x22(r2+3)9+r466r2+36936=0x22(o2+3)13x+r466r2+36952=0tangentingcirclesmeanswemustfindrinordertogeta?doublesolutionforxx2+px+q=0x=p2±p24qweneedp24q=09676(r498r2+529)=0r=6±13[r>0]circle1:(x2)2+(y+2)2+491213=0circle2:(x2)2+(y+2)2+49+1213=0
Commented by malwan last updated on 25/Nov/20
thank you so much sir
thankyousomuchsir
Commented by peter frank last updated on 25/Nov/20
thank you
thankyou

Leave a Reply

Your email address will not be published. Required fields are marked *