Menu Close

Find-the-exact-value-of-0-0-




Question Number 48291 by Rio Michael last updated on 21/Nov/18
Find the exact value of 0^0
Findtheexactvalueof00
Commented by maxmathsup by imad last updated on 21/Nov/18
0^0 =lim_(x→0^+ )    x^x =lim_(x→0^+ )      e^(xln(x))   =e^0 =1  because lim_(x→0^+ )   xln(x)=0 for  that we take 0^0 =1 .
00=limx0+xx=limx0+exln(x)=e0=1becauselimx0+xln(x)=0forthatwetake00=1.
Answered by MJS last updated on 21/Nov/18
0^0  is not defined  1^(st)  step  a÷b=(a/b)=c ⇒ a=c×b  ⇒ b≠0 because if b=0 we have  a÷0=(a/0)=c ⇒ a=c×0=0  example: 5÷0=(5/0)=c ⇒ 5=c×0=0 which is wrong  conclusion: a÷0=(a/0) is not defined ⇒  ⇒ a÷b=(a/b)=c for b≠0    2^(nd)  step  a^n =a×a×a×... (n times)  0^n =0×0×0×... =0  (a^m /a^n )=a^(m−n)  ⇒ (a^n /a^n )=a^0 =1 but because of our  above conclusion a≠0 ⇒ 0^0  is not defined    but sometimes it makes sense to define it  for some reasons. in these cases we are free  to set the value. f(x)=(x/x)=1 ∀x≠0 ⇒ we  can define f(0)=1 to keep the function  continous. or f(x)=x^x . usually we want to  give it the value of the limit.
00isnotdefined1ststepa÷b=ab=ca=c×bb0becauseifb=0wehavea÷0=a0=ca=c×0=0example:5÷0=50=c5=c×0=0whichiswrongconclusion:a÷0=a0isnotdefineda÷b=ab=cforb02ndstepan=a×a×a×(ntimes)0n=0×0×0×=0aman=amnanan=a0=1butbecauseofouraboveconclusiona000isnotdefinedbutsometimesitmakessensetodefineitforsomereasons.inthesecaseswearefreetosetthevalue.f(x)=xx=1x0wecandefinef(0)=1tokeepthefunctioncontinous.orf(x)=xx.usuallywewanttogiveitthevalueofthelimit.

Leave a Reply

Your email address will not be published. Required fields are marked *