Menu Close

find-the-exact-value-of-0-2pi-dx-1-sin-x-1-cos-x-




Question Number 167644 by MJS_new last updated on 22/Mar/22
find the exact value of  ∫_0 ^(2π) (dx/( (√(1+sin x))+(√(1+cos x))))
findtheexactvalueof2π0dx1+sinx+1+cosx
Commented by cortano1 last updated on 23/Mar/22
i got3.962   it true?
igot3.962ittrue?
Commented by MJS_new last updated on 23/Mar/22
yes. but can you give the exact value?
yes.butcanyougivetheexactvalue?
Answered by greogoury55 last updated on 23/Mar/22
  ∫_0 ^( 2π) (dx/( (√(1+sin x)) +(√(1+cos x))))    = 2∫_0 ^( π) (dx/(∣sin (x/2)+cos (x/2)∣+(√2) ∣cos (x/2)∣))   = 2∫_0 ^( π)  (dt/(∣sin t+cos t∣+(√2) ∣cos t∣))   =∫_0 ^(π/2) ((2dt)/(sin t+(1+(√2))cos t)) + ∫_(π/2) ^((3π)/4) ((2dt)/(sin t+(1−(√2))cos t))   −∫_((3π)/4) ^π ((2dt)/(sin t+(1+(√2))cos t))   = [(4/((1+(√2))(√(4−2(√2))))) tanh^(−1) (((tan (x/4)−(√2)+1)/( (√(4−2(√2))))))]_0 ^(2π)
02πdx1+sinx+1+cosx=20πdxsinx2+cosx2+2cosx2=20πdtsint+cost+2cost=0π22dtsint+(1+2)cost+π23π42dtsint+(12)cost3π4π2dtsint+(1+2)cost=[4(1+2)422tanh1(tanx42+1422)]02π
Commented by MJS_new last updated on 23/Mar/22
I think this is wrong. I solved the integral at  question 167586. but for the area we are not  allowed to ignore the absolute values
Ithinkthisiswrong.Isolvedtheintegralatquestion167586.butfortheareawearenotallowedtoignoretheabsolutevalues
Commented by MJS_new last updated on 24/Mar/22
F(x)=(4/((1+(√2))(√(4−2(√2))))) tanh^(−1) (((tan (x/4)−(√2)+1)/( (√(4−2(√2))))))  F(x) is not defined for  x≥4arctan (−1+(√2)+(√(4−2(√2)))) ≈3.927<2π
F(x)=4(1+2)422tanh1(tanx42+1422)F(x)isnotdefinedforx4arctan(1+2+422)3.927<2π
Commented by greogoury55 last updated on 24/Mar/22
no sir. it my answer correct but different  way with your solution
nosir.itmyanswercorrectbutdifferentwaywithyoursolution

Leave a Reply

Your email address will not be published. Required fields are marked *