Menu Close

Find-the-first-four-terms-in-the-expansion-of-x-3-1-x-2-2-2-x-2-in-ascending-power-of-x-M-m-




Question Number 185449 by Mastermind last updated on 22/Jan/23
Find the first four terms in the  expansion of ((x−3)/((1−x^2 )^2 (2+x^2 ))) in  ascending power of x.      M.m
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{first}\:\mathrm{four}\:\mathrm{terms}\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{expansion}\:\mathrm{of}\:\frac{\mathrm{x}−\mathrm{3}}{\left(\mathrm{1}−\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{2}} \left(\mathrm{2}+\mathrm{x}^{\mathrm{2}} \right)}\:\mathrm{in} \\ $$$$\mathrm{ascending}\:\mathrm{power}\:\mathrm{of}\:\mathrm{x}. \\ $$$$ \\ $$$$ \\ $$$$\mathrm{M}.\mathrm{m} \\ $$
Answered by mr W last updated on 22/Jan/23
−(1/2)(3−x)Σ_(k=0) ^∞ C_1 ^(k+1) x^(2k) Σ_(r=0) ^∞ (−1)^r (x^(2r) /2^r )  x^0  term:  −(3/2)×1×1=−(3/2) ✓  x^1  term:  −(1/2)×(−1)×1×1=(1/2) ✓  x^2  term:  −(3/2)×{2×1+1×(−(1/2))}=−(9/4) ✓  x^3  term:  −(1/2)×(−1)×{2×1+1×(−(1/2))}=(3/4) ✓  ....
$$−\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{3}−{x}\right)\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}{C}_{\mathrm{1}} ^{{k}+\mathrm{1}} {x}^{\mathrm{2}{k}} \underset{{r}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{r}} \frac{{x}^{\mathrm{2}{r}} }{\mathrm{2}^{{r}} } \\ $$$${x}^{\mathrm{0}} \:{term}: \\ $$$$−\frac{\mathrm{3}}{\mathrm{2}}×\mathrm{1}×\mathrm{1}=−\frac{\mathrm{3}}{\mathrm{2}}\:\checkmark \\ $$$${x}^{\mathrm{1}} \:{term}: \\ $$$$−\frac{\mathrm{1}}{\mathrm{2}}×\left(−\mathrm{1}\right)×\mathrm{1}×\mathrm{1}=\frac{\mathrm{1}}{\mathrm{2}}\:\checkmark \\ $$$${x}^{\mathrm{2}} \:{term}: \\ $$$$−\frac{\mathrm{3}}{\mathrm{2}}×\left\{\mathrm{2}×\mathrm{1}+\mathrm{1}×\left(−\frac{\mathrm{1}}{\mathrm{2}}\right)\right\}=−\frac{\mathrm{9}}{\mathrm{4}}\:\checkmark \\ $$$${x}^{\mathrm{3}} \:{term}: \\ $$$$−\frac{\mathrm{1}}{\mathrm{2}}×\left(−\mathrm{1}\right)×\left\{\mathrm{2}×\mathrm{1}+\mathrm{1}×\left(−\frac{\mathrm{1}}{\mathrm{2}}\right)\right\}=\frac{\mathrm{3}}{\mathrm{4}}\:\checkmark \\ $$$$…. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *