Menu Close

Find-the-first-four-terms-in-the-series-expansion-of-1-3x-5-ascending-power-x-and-state-the-set-of-values-of-x-for-which-this-expansion-is-valid-




Question Number 131054 by benjo_mathlover last updated on 01/Feb/21
Find the first four terms in the series   expansion of (1/(3x+5)) ascending power  x and state the set of values of x for  which this expansion is valid .
Findthefirstfourtermsintheseriesexpansionof13x+5ascendingpowerxandstatethesetofvaluesofxforwhichthisexpansionisvalid.
Answered by EDWIN88 last updated on 01/Feb/21
remark binomial theorem  for n∉N and ∣X∣<1 is (1+X)^n =1+nX+((n(n−1))/(2!))X^2 +((n(n−1)(n−2))/(3!))X^3 +...  then transform (1/(3x+5)) into form  (1+X)^n  by writting (1/(3x+5))=(1/(5(1+3x/5)))=(1/5)(1+((3x)/5))^(−1)   using n=−1 ,X=((3x)/5)  (1/(3x+5))=(1/5){ 1+(−1)((3x)/5)+(((−1)(−2))/(2!))(((3x)/5))^2 +(((−1)(−2)(−3))/(3!))(((3x)/5))^3 +... }              = (1/5)−((3x)/(25))+((9x^2 )/(125))−((27x^3 )/(625))+...  because the binomial of(1+X)^n   valid for ∣X∣<1 then ∣((3x)/5)∣<1  the set of the values of x is {x: −(5/3)<x<(5/3) }
remarkbinomialtheoremfornNandX∣<1is(1+X)n=1+nX+n(n1)2!X2+n(n1)(n2)3!X3+thentransform13x+5intoform(1+X)nbywritting13x+5=15(1+3x/5)=15(1+3x5)1usingn=1,X=3x513x+5=15{1+(1)3x5+(1)(2)2!(3x5)2+(1)(2)(3)3!(3x5)3+}=153x25+9x212527x3625+becausethebinomialof(1+X)nvalidforX∣<1then3x5∣<1thesetofthevaluesofxis{x:53<x<53}
Answered by mr W last updated on 01/Feb/21
(1/(3x+5))  =(1/5)×(1/(1−(−((3x)/5))))  =(1/5)[1+(−((3x)/5))+(−((3x)/5))^2 +(−((3x)/5))^3 +...]  =(1/5)(1−((3x)/5)+((9x^2 )/(25))−((27x^3 )/(125))+...)  =(1/5)−((3x)/(25))+((9x^2 )/(125))−((27x^3 )/(625))+...  with ∣−((3x)/5)∣<1  ⇒−(5/3)<x<(5/3)
13x+5=15×11(3x5)=15[1+(3x5)+(3x5)2+(3x5)3+]=15(13x5+9x22527x3125+)=153x25+9x212527x3625+with3x5∣<153<x<53

Leave a Reply

Your email address will not be published. Required fields are marked *