Menu Close

Find-the-first-four-terms-of-the-series-for-e-x-sinhx-Mastermind-




Question Number 170199 by Mastermind last updated on 18/May/22
Find the first four terms of the series  for e^x sinhx    Mastermind
FindthefirstfourtermsoftheseriesforexsinhxMastermind
Answered by floor(10²Eta[1]) last updated on 18/May/22
sinhx=((e^x −e^(−x) )/2)  ∴e^x sinhx=((e^(2x) −1)/2)=f(x)  f(0)=0  f′(x)=e^(2x) ⇒f′(0)=1  f′′(x)=2e^(2x) ⇒f′′(0)=2  f′′′(x)=4e^(2x) ⇒f′′′(0)=4  ⇒f^((n)) (x)=2^(n−1) e^(2x) ⇒f^((n)) (0)=2^(n−1) ,n>0    f(x)=Σ_(n=0) ^∞ ((f^((n)) (0)x^n )/(n!))=x+((2x^2 )/(2!))+((4x^3 )/(3!))+((8x^4 )/(4!))+...+((2^(k−1) x^k )/(k!))+...
sinhx=exex2exsinhx=e2x12=f(x)f(0)=0f(x)=e2xf(0)=1f(x)=2e2xf(0)=2f(x)=4e2xf(0)=4f(n)(x)=2n1e2xf(n)(0)=2n1,n>0f(x)=n=0f(n)(0)xnn!=x+2x22!+4x33!+8x44!++2k1xkk!+
Commented by Mastermind last updated on 19/May/22
thanks
thanks

Leave a Reply

Your email address will not be published. Required fields are marked *