Menu Close

Find-the-first-four-terms-of-the-series-for-e-x-sinhx-Mastermind-




Question Number 170199 by Mastermind last updated on 18/May/22
Find the first four terms of the series  for e^x sinhx    Mastermind
$${Find}\:{the}\:{first}\:{four}\:{terms}\:{of}\:{the}\:{series} \\ $$$${for}\:{e}^{{x}} {sinhx} \\ $$$$ \\ $$$${Mastermind} \\ $$
Answered by floor(10²Eta[1]) last updated on 18/May/22
sinhx=((e^x −e^(−x) )/2)  ∴e^x sinhx=((e^(2x) −1)/2)=f(x)  f(0)=0  f′(x)=e^(2x) ⇒f′(0)=1  f′′(x)=2e^(2x) ⇒f′′(0)=2  f′′′(x)=4e^(2x) ⇒f′′′(0)=4  ⇒f^((n)) (x)=2^(n−1) e^(2x) ⇒f^((n)) (0)=2^(n−1) ,n>0    f(x)=Σ_(n=0) ^∞ ((f^((n)) (0)x^n )/(n!))=x+((2x^2 )/(2!))+((4x^3 )/(3!))+((8x^4 )/(4!))+...+((2^(k−1) x^k )/(k!))+...
$$\mathrm{sinhx}=\frac{\mathrm{e}^{\mathrm{x}} −\mathrm{e}^{−\mathrm{x}} }{\mathrm{2}} \\ $$$$\therefore\mathrm{e}^{\mathrm{x}} \mathrm{sinhx}=\frac{\mathrm{e}^{\mathrm{2x}} −\mathrm{1}}{\mathrm{2}}=\mathrm{f}\left(\mathrm{x}\right) \\ $$$$\mathrm{f}\left(\mathrm{0}\right)=\mathrm{0} \\ $$$$\mathrm{f}'\left(\mathrm{x}\right)=\mathrm{e}^{\mathrm{2x}} \Rightarrow\mathrm{f}'\left(\mathrm{0}\right)=\mathrm{1} \\ $$$$\mathrm{f}''\left(\mathrm{x}\right)=\mathrm{2e}^{\mathrm{2x}} \Rightarrow\mathrm{f}''\left(\mathrm{0}\right)=\mathrm{2} \\ $$$$\mathrm{f}'''\left(\mathrm{x}\right)=\mathrm{4e}^{\mathrm{2x}} \Rightarrow\mathrm{f}'''\left(\mathrm{0}\right)=\mathrm{4} \\ $$$$\Rightarrow\mathrm{f}^{\left(\mathrm{n}\right)} \left(\mathrm{x}\right)=\mathrm{2}^{\mathrm{n}−\mathrm{1}} \mathrm{e}^{\mathrm{2x}} \Rightarrow\mathrm{f}^{\left(\mathrm{n}\right)} \left(\mathrm{0}\right)=\mathrm{2}^{\mathrm{n}−\mathrm{1}} ,\mathrm{n}>\mathrm{0} \\ $$$$ \\ $$$$\mathrm{f}\left(\mathrm{x}\right)=\underset{\mathrm{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{f}^{\left(\mathrm{n}\right)} \left(\mathrm{0}\right)\mathrm{x}^{\mathrm{n}} }{\mathrm{n}!}=\mathrm{x}+\frac{\mathrm{2x}^{\mathrm{2}} }{\mathrm{2}!}+\frac{\mathrm{4x}^{\mathrm{3}} }{\mathrm{3}!}+\frac{\mathrm{8x}^{\mathrm{4}} }{\mathrm{4}!}+…+\frac{\mathrm{2}^{\mathrm{k}−\mathrm{1}} \mathrm{x}^{\mathrm{k}} }{\mathrm{k}!}+… \\ $$$$ \\ $$$$ \\ $$
Commented by Mastermind last updated on 19/May/22
thanks
$${thanks} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *