Menu Close

Find-the-first-three-term-of-the-series-for-e-x-ln-1-x-Mastermind-




Question Number 170198 by Mastermind last updated on 18/May/22
Find the first three term of the series  for e^x ln(1+x)    Mastermind
$${Find}\:{the}\:{first}\:{three}\:{term}\:{of}\:{the}\:{series} \\ $$$${for}\:{e}^{{x}} {ln}\left(\mathrm{1}+{x}\right) \\ $$$$ \\ $$$${Mastermind} \\ $$
Answered by Mathspace last updated on 18/May/22
e^x =Σ_(n=0) ^∞ (x^n /(n!))=1+x +(x^2 /2) +(x^3 /6)+o(x^4 )  ln^((1)) (1+x)=(1/(1+x))=1−x+x^2 −x^3 +o(x^4 ) ⇒  e^x ln(1+x)=(1+x+(x^2 /2)+(x^3 /6)+o(x^4 ))(1−x+x^2 −x^3 +o(x^4 ))  =1−x+x^2 −x^3 +x−x^2 +x^3 −x^4   +(x^2 /2)−(x^3 /2)+(x^4 /2)−(x^5 /2)+(x^3 /6)−(x^4 /6)+(x^5 /6)−(x^6 /6)+o(x^6 )  =....
$${e}^{{x}} =\sum_{{n}=\mathrm{0}} ^{\infty} \frac{{x}^{{n}} }{{n}!}=\mathrm{1}+{x}\:+\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\:+\frac{{x}^{\mathrm{3}} }{\mathrm{6}}+{o}\left({x}^{\mathrm{4}} \right) \\ $$$${ln}^{\left(\mathrm{1}\right)} \left(\mathrm{1}+{x}\right)=\frac{\mathrm{1}}{\mathrm{1}+{x}}=\mathrm{1}−{x}+{x}^{\mathrm{2}} −{x}^{\mathrm{3}} +{o}\left({x}^{\mathrm{4}} \right)\:\Rightarrow \\ $$$${e}^{{x}} {ln}\left(\mathrm{1}+{x}\right)=\left(\mathrm{1}+{x}+\frac{{x}^{\mathrm{2}} }{\mathrm{2}}+\frac{{x}^{\mathrm{3}} }{\mathrm{6}}+{o}\left({x}^{\mathrm{4}} \right)\right)\left(\mathrm{1}−{x}+{x}^{\mathrm{2}} −{x}^{\mathrm{3}} +{o}\left({x}^{\mathrm{4}} \right)\right) \\ $$$$=\mathrm{1}−{x}+{x}^{\mathrm{2}} −{x}^{\mathrm{3}} +{x}−{x}^{\mathrm{2}} +{x}^{\mathrm{3}} −{x}^{\mathrm{4}} \\ $$$$+\frac{{x}^{\mathrm{2}} }{\mathrm{2}}−\frac{{x}^{\mathrm{3}} }{\mathrm{2}}+\frac{{x}^{\mathrm{4}} }{\mathrm{2}}−\frac{{x}^{\mathrm{5}} }{\mathrm{2}}+\frac{{x}^{\mathrm{3}} }{\mathrm{6}}−\frac{{x}^{\mathrm{4}} }{\mathrm{6}}+\frac{{x}^{\mathrm{5}} }{\mathrm{6}}−\frac{{x}^{\mathrm{6}} }{\mathrm{6}}+{o}\left({x}^{\mathrm{6}} \right) \\ $$$$=…. \\ $$
Commented by Mastermind last updated on 20/May/22
That′s last answer?
$${That}'{s}\:{last}\:{answer}? \\ $$
Commented by Mastermind last updated on 19/May/22
thanks sir
$${thanks}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *