Menu Close

find-the-following-product-integral-1-x-dx-2-e-x-dx-




Question Number 110096 by mathdave last updated on 27/Aug/20
find the following product integral          (1)    ∫(x)^dx            (2)    ∫(e^x )^dx
$${find}\:{the}\:{following}\:{product}\:{integral} \\ $$$$\:\:\:\:\:\:\:\:\left(\mathrm{1}\right)\:\:\:\:\int\left({x}\right)^{{dx}} \\ $$$$\:\:\:\:\:\:\:\:\:\left(\mathrm{2}\right)\:\:\:\:\int\left({e}^{{x}} \right)^{{dx}} \\ $$
Commented by Her_Majesty last updated on 27/Aug/20
if you use the same definition of product  integral as me  (1) (x/e)^x ×C  (2) e^(x^2 /2) ×C
$${if}\:{you}\:{use}\:{the}\:{same}\:{definition}\:{of}\:{product} \\ $$$${integral}\:{as}\:{me} \\ $$$$\left(\mathrm{1}\right)\:\left({x}/{e}\right)^{{x}} ×{C} \\ $$$$\left(\mathrm{2}\right)\:{e}^{{x}^{\mathrm{2}} /\mathrm{2}} ×{C} \\ $$
Commented by mathdave last updated on 27/Aug/20
oh no that is not correct
$${oh}\:{no}\:{that}\:{is}\:{not}\:{correct} \\ $$
Commented by Her_Majesty last updated on 27/Aug/20
then please post the definition
$${then}\:{please}\:{post}\:{the}\:{definition} \\ $$
Commented by Her_Majesty last updated on 27/Aug/20
the definition I know is  ∫f(x)^dx =e^(∫ln(f(x))dx)   and as you should know there are many  kinds of product integrals
$${the}\:{definition}\:{I}\:{know}\:{is} \\ $$$$\int{f}\left({x}\right)^{{dx}} ={e}^{\int{ln}\left({f}\left({x}\right)\right){dx}} \\ $$$${and}\:{as}\:{you}\:{should}\:{know}\:{there}\:{are}\:{many} \\ $$$${kinds}\:{of}\:{product}\:{integrals} \\ $$
Commented by mathdave last updated on 27/Aug/20
you are very very correct ur majesty
$${you}\:{are}\:{very}\:{very}\:{correct}\:{ur}\:{majesty} \\ $$
Commented by Her_Majesty last updated on 27/Aug/20
so which definition do you mean?
$${so}\:{which}\:{definition}\:{do}\:{you}\:{mean}? \\ $$
Commented by mathdave last updated on 27/Aug/20
your working are all correct.i haven′t  work on the problem then i just post it
$${your}\:{working}\:{are}\:{all}\:{correct}.{i}\:{haven}'{t} \\ $$$${work}\:{on}\:{the}\:{problem}\:{then}\:{i}\:{just}\:{post}\:{it} \\ $$
Commented by Her_Majesty last updated on 27/Aug/20
ok
$${ok} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *