Menu Close

Find-the-fourier-series-of-f-x-x-from-0-lt-x-lt-pi-




Question Number 17625 by tawa tawa last updated on 08/Jul/17
Find the fourier series of :  f(x) = x,  from   0 < x < π
Findthefourierseriesof:f(x)=x,from0<x<π
Commented by tawa tawa last updated on 08/Jul/17
please help with this.
pleasehelpwiththis.
Answered by alex041103 last updated on 09/Jul/17
(π/2)−Σ_(n=1) ^∞ ((sin(2nx))/n) = f(x) = x when x∈(0, π)
π2n=1sin(2nx)n=f(x)=xwhenx(0,π)
Commented by tawa tawa last updated on 09/Jul/17
i have a question sir ?  Is the period  π  or  2π ?  how can i identify if it is π or 2π ?  if the period is π  ... how can i reperesent     a_(0   ,  ) a_n  ,   and  b_n   if it the period is 2π  ... how can i reperesent     a_(0   ,  ) a_n  ,   and  b_n
ihaveaquestionsir?Istheperiodπor2π?howcaniidentifyifitisπor2π?iftheperiodisπhowcanireperesenta0,an,andbnifittheperiodis2πhowcanireperesenta0,an,andbn
Commented by alex041103 last updated on 09/Jul/17
  It′s easy to prove that if  f(x)=c+Σ_(n=1) ^∞ [a_n cos(((2πnx)/T)) + b_n sin(((2πnx)/T))]  then  c=(1/T)∫_0 ^T f(x) dx  a_n =(2/T)∫_0 ^T f(x)cos(((2πnx)/T)) dx  b_b =(2/T)∫_0 ^T f(x)sin(((2πnx)/T)) dx    In the case of f(x)=x we will set the period   T=π  ⇒c=(π/2) , a_n =0 , b_n =−(1/n)  ⇒x∈(0, π), f(x)=(π/2) − Σ_(n=1) ^∞ ((sin(2nx))/n)
Itseasytoprovethatiff(x)=c+n=1[ancos(2πnxT)+bnsin(2πnxT)]thenc=1TT0f(x)dxan=2TT0f(x)cos(2πnxT)dxbb=2TT0f(x)sin(2πnxT)dxInthecaseoff(x)=xwewillsettheperiodT=πc=π2,an=0,bn=1nx(0,π),f(x)=π2n=1sin(2nx)n
Commented by tawa tawa last updated on 09/Jul/17
That means for period  2π  a_0  = (1/π) ∫_( 0) ^( 2π) f(x)  a_n  = (1/π) ∫_( 0) ^( 2π) f(x)cos(nx)  b_n  = (1/π) ∫_( 0) ^( 2π) f(x)sin(nx)  Again,  That means for period  π  a_0  = (2/π) ∫_( 0) ^( π) f(x)  a_n  = (2/π) ∫_( 0) ^( π) f(x)cos(nx)  b_n  = (2/π) ∫_( 0) ^( π) f(x)sin(nx)  ??????????????
Thatmeansforperiod2πa0=1π02πf(x)an=1π02πf(x)cos(nx)bn=1π02πf(x)sin(nx)Again,Thatmeansforperiodπa0=2π0πf(x)an=2π0πf(x)cos(nx)bn=2π0πf(x)sin(nx)??????????????
Commented by alex041103 last updated on 09/Jul/17
No.  For period of π we have:  b_n  = (2/π) ∫_( 0) ^( π) f(x)sin(((2π)/π)nx)dx=(2/π)∫_0 ^π f(x)sin(2nx) dx  a_n  = (2/π) ∫_( 0) ^( π) f(x)cos(((2π)/π)nx) dx=(2/π)∫_0 ^π f(x)cos(2nx) dx  a_0  = (2/π) ∫_( 0) ^( π) f(x) dx  And in fact if we use T=2π(the period is 2π)   we are going to get fourier seriesfor  f(x)=x for x∈[0, 2π]
No.Forperiodofπwehave:bn=2π0πf(x)sin(2ππnx)dx=2ππ0f(x)sin(2nx)dxan=2π0πf(x)cos(2ππnx)dx=2ππ0f(x)cos(2nx)dxa0=2π0πf(x)dxAndinfactifweuseT=2π(theperiodis2π)wearegoingtogetfourierseriesforf(x)=xforx[0,2π]
Commented by tawa tawa last updated on 09/Jul/17
God bless you sir.
Godblessyousir.
Commented by alex041103 last updated on 10/Jul/17
Commented by alex041103 last updated on 10/Jul/17
Blue→T=2π,i.e. for 0<x<2π  x=π−2Σ_(n=1) ^∞ ((sin(nx))/n)  Red→T=π,i.e. for 0<x<π  x=(π/2)−Σ_(n=1) ^∞ ((sin(2nx))/n)
BlueT=2π,i.e.for0<x<2πx=π2n=1sin(nx)nRedT=π,i.e.for0<x<πx=π2n=1sin(2nx)n
Commented by tawa tawa last updated on 10/Jul/17
i really appreciate your effort sir. God bless you.
ireallyappreciateyoureffortsir.Godblessyou.

Leave a Reply

Your email address will not be published. Required fields are marked *