Menu Close

find-the-fourier-series-of-the-function-f-x-x-2-x-0-x-2-0-x-2-help-me-sir-




Question Number 100966 by mhmd last updated on 29/Jun/20
find the fourier series of the function  f(x)= { ((x         −2≤x≤0)),((x+2        0≤x≤2)) :}      help me sir ?
findthefourierseriesofthefunctionf(x)={x2x0x+20x2helpmesir?
Commented by bobhans last updated on 29/Jun/20
f(x) = (a_o /2) + Σ_(n=1) ^∞  b_n cos (((nπx)/L))  b_n =(2/4) [ ∫_(−2) ^0 x sin (((nπx)/4)) dx + ∫_0 ^2 (x+2)sin (((nπx)/4)) dx ]  b_n = (1/2)[ ∫_(−2) ^2 x sin (((nπx)/4)) dx + ∫_0 ^2 2 sin (((nπx)/4)) dx ]  b_n  = (1/2)[ −((4x)/(nπ)) cos (((nπx)/4))+((16)/((nπ)^2 )) sin (((nπx)/4)) ]_(−2) ^2   − (1/2) [ (8/(nπ)) cos (((nπx)/4)) ]_0 ^2
f(x)=ao2+n=1bncos(nπxL)bn=24[02xsin(nπx4)dx+20(x+2)sin(nπx4)dx]bn=12[22xsin(nπx4)dx+202sin(nπx4)dx]bn=12[4xnπcos(nπx4)+16(nπ)2sin(nπx4)]2212[8nπcos(nπx4)]02
Commented by mhmd last updated on 29/Jun/20
how are you sir ? am dont anderstand how [bn cos(((nπx)/L))]   because the fourier series is given by   f(x)=((ao)/2)+some (n≥1)[an cos(((nπx)/L))+bn sin(((nπx)/l))]  how bn cos(((nπx)/L)) and where an cos(((nπx)/L)) blease sir can you exact this blease  im very want this equestion ?
howareyousir?amdontanderstandhow[bncos(nπxL)]becausethefourierseriesisgivenbyf(x)=ao2+some(n1)[ancos(nπxL)+bnsin(nπxl)]howbncos(nπxL)andwhereancos(nπxL)bleasesircanyouexactthisbleaseimverywantthisequestion?
Commented by mathmax by abdo last updated on 29/Jun/20
sir bobhans you have supposed that f is even and this is not given in the  question you must use f(x) =(a_o /2) +Σ_(n=1) ^∞  (a_n cos(nwx) +b_n sin(nwx))  a_n =(1/T)∫_(−(T/2)) ^(T/2)  f(x)cos(nx)dx and b_n =(1/T)∫_(−(T/2)) ^(T/2)  f(x)sin(nx)dx   (w =((2π)/T))
sirbobhansyouhavesupposedthatfisevenandthisisnotgiveninthequestionyoumustusef(x)=ao2+n=1(ancos(nwx)+bnsin(nwx))an=1TT2T2f(x)cos(nx)dxandbn=1TT2T2f(x)sin(nx)dx(w=2πT)

Leave a Reply

Your email address will not be published. Required fields are marked *