Menu Close

find-the-fourier-transform-of-signum-function-




Question Number 129446 by Eric002 last updated on 15/Jan/21
find the fourier transform of signum  function
findthefouriertransformofsignumfunction
Answered by Olaf last updated on 16/Jan/21
sgn(x) =  { ((−1, x < 1)),((0, x = 0)),((+1, x > 1)) :}   sgn^(�) (f) = lim_(T→∞,α→0) {∫_(−(T/2)) ^(+(T/2)) sgn_α (t)e^(−j2πft) dt}  with sgn_α (t) =  { ((−e^(αt) , t < 0)),((+e^(αt) , t > 0)) :}  sgn^(�) (f) = lim_(T→∞,α→0)  {−∫_(−(T/2)) ^(+0) e^(−jt(2πf+jα)) dt  +∫_0 ^(+(T/2)) e^(−jt(2πf−jα)) dt}  sgn^(�) (f) = lim_(T→∞,α→0)  {(1/(−α+j2πf))+(1/(α+j2πf))  +((e^(−α(T/2)) e^(jπft) )/(α−j2πf))+((e^(−α(T/2)) e^(−j2πf) )/(α+j2πf))}  Finally, by imposing αT→∞ :  sgn^(�) (f) = lim_(α→0)  {((j4πf)/(−α^2 −4π^2 f^2 ))} = (1/(jπf))  sgn^(�) (f) = = (1/(jπf)), f is the frequency [Hertz]  or sgn^(�) (ω) = (1/( (√(2π)))).(1/(jπ(ω/(2π)))) = (√(2/π)).(1/(jω))  (ω is the pulsation [rad.s^(−1) ])
sgn(x)={1,x<10,x=0+1,x>1sgn^(f)=limT,α0{T2+T2sgnα(t)ej2πftdt}withsgnα(t)={eαt,t<0+eαt,t>0sgn^(f)=limT,α0{T2+0ejt(2πf+jα)dt+0+T2ejt(2πfjα)dt}sgn^(f)=limT,α0{1α+j2πf+1α+j2πf+eαT2ejπftαj2πf+eαT2ej2πfα+j2πf}Finally,byimposingαT:sgn^(f)=limα0{j4πfα24π2f2}=1jπfsgn^(f)==1jπf,fisthefrequency[Hertz]orsgn^(ω)=12π.1jπω2π=2π.1jω(ωisthepulsation[rad.s1])
Commented by Eric002 last updated on 16/Jan/21
well done sir
welldonesir

Leave a Reply

Your email address will not be published. Required fields are marked *