Question Number 82244 by M±th+et£s last updated on 19/Feb/20
![find the function of f when this function continue at interval [−∞,0] ∫_(−x^2 ) ^0 f(t) dt=(d/dx)[x(1−sin(πx)]](https://www.tinkutara.com/question/Q82244.png)
Commented by mr W last updated on 19/Feb/20
![∫_(−x^2 ) ^0 f(t) dt=(d/dx)[x(1−sin(πx)] ∫_(−x^2 ) ^0 f(t) dt=1−sin(πx)−πx cos (πx) 2xf(−x^2 )=−2πcos (πx)+π^2 x sin (πx) f(−x^2 )=−(π/x)cos (πx)+(π^2 /2) sin (πx) t=−x^2 ⇒x=±(√(−t)) f(t)=∓(π/( (√(−t))))cos (π(√(−t)))±(π^2 /2) sin (π(√(−t))) ⇒f(x)=∓(π/( (√(−x))))cos (π(√(−x)))±(π^2 /2) sin (π(√(−x)))](https://www.tinkutara.com/question/Q82252.png)
Commented by M±th+et£s last updated on 19/Feb/20

Answered by mind is power last updated on 19/Feb/20
![⇒2xf(−x^2 )=(d^2 /dx^2 )[x−xsin(πx)] ⇒f(−x^2 )=(1/(2x))(d/dx)[−sin(πx)−πxcos(πx)] ⇒f(−x^2 )=(1/(2x)).[−2πcos(πx)+π^2 xsin(πx)] f(−x^2 )=−((πcos(πx))/x)+(π^2 /2)sin(πx) −x^2 =y⇒x=+_− (√(−y)) we got 2 solution f(y)=−((πcos(π(√(−y))))/( (√(−y))))+((π^2 sin(π(√(−y))))/2) y≠0 f(0)=0 and −f](https://www.tinkutara.com/question/Q82260.png)
Commented by M±th+et£s last updated on 19/Feb/20
