Menu Close

find-the-function-of-f-when-this-function-continue-at-interval-0-x-2-0-f-t-dt-d-dx-x-1-sin-pix-




Question Number 82244 by M±th+et£s last updated on 19/Feb/20
find the function of f when this    function continue at interval [−∞,0]  ∫_(−x^2 ) ^0 f(t) dt=(d/dx)[x(1−sin(πx)]
findthefunctionoffwhenthisfunctioncontinueatinterval[,0]x20f(t)dt=ddx[x(1sin(πx)]
Commented by mr W last updated on 19/Feb/20
∫_(−x^2 ) ^0 f(t) dt=(d/dx)[x(1−sin(πx)]  ∫_(−x^2 ) ^0 f(t) dt=1−sin(πx)−πx cos (πx)  2xf(−x^2 )=−2πcos (πx)+π^2 x sin (πx)  f(−x^2 )=−(π/x)cos (πx)+(π^2 /2) sin (πx)  t=−x^2  ⇒x=±(√(−t))  f(t)=∓(π/( (√(−t))))cos (π(√(−t)))±(π^2 /2) sin (π(√(−t)))  ⇒f(x)=∓(π/( (√(−x))))cos (π(√(−x)))±(π^2 /2) sin (π(√(−x)))
x20f(t)dt=ddx[x(1sin(πx)]x20f(t)dt=1sin(πx)πxcos(πx)2xf(x2)=2πcos(πx)+π2xsin(πx)f(x2)=πxcos(πx)+π22sin(πx)t=x2x=±tf(t)=πtcos(πt)±π22sin(πt)f(x)=πxcos(πx)±π22sin(πx)
Commented by M±th+et£s last updated on 19/Feb/20
god bless you sir
godblessyousir
Answered by mind is power last updated on 19/Feb/20
⇒2xf(−x^2 )=(d^2 /dx^2 )[x−xsin(πx)]  ⇒f(−x^2 )=(1/(2x))(d/dx)[−sin(πx)−πxcos(πx)]  ⇒f(−x^2 )=(1/(2x)).[−2πcos(πx)+π^2 xsin(πx)]  f(−x^2 )=−((πcos(πx))/x)+(π^2 /2)sin(πx)  −x^2 =y⇒x=+_− (√(−y))  we got 2 solution   f(y)=−((πcos(π(√(−y))))/( (√(−y))))+((π^2 sin(π(√(−y))))/2)  y≠0  f(0)=0    and −f
2xf(x2)=d2dx2[xxsin(πx)]f(x2)=12xddx[sin(πx)πxcos(πx)]f(x2)=12x.[2πcos(πx)+π2xsin(πx)]f(x2)=πcos(πx)x+π22sin(πx)x2=yx=+ywegot2solutionf(y)=πcos(πy)y+π2sin(πy)2y0f(0)=0andf
Commented by M±th+et£s last updated on 19/Feb/20
god bless you sir
godblessyousir

Leave a Reply

Your email address will not be published. Required fields are marked *